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1. INTRODUCTION 

The cooperative platoon control of connected and autonomous vehicles (CAV) leverages the emerging 

vehicle-to-vehicle (V2V), and vehicle-to-infrastructure (V2I) communications to enhance the control 

performance in mitigating the propagation of traffic oscillations, increasing the road throughput, and 

reducing fuel consumptions. During the cooperative platoon control, CAVs will share the kinematic 

information with neighboring vehicles using a certain information flow topology (IFT), to reach to a 

consensus where all CAVs in the platoon will operate together at a harmonized speed, and maintain 

desired safe spacings with the preceding vehicles. However, to implement the cooperative platoon 

control of CAV in the real world, there are critical challenges existing in both communication and 

computational related issues, and this project aims at tackling with these critical issues. 

Specifically, in the communication side, when the traffic density is high, and substantial amount of 

communication links are working simultaneously, the communication burden will be significant, and 

the ongoing communication links can interfere with each other. Under this circumstance, 

communication failure is prone to happen. To alleviate the issue of communication failure, chapter 2 of 

this study investigates the control mechanism involving IFT optimization, and controller switching. In 

the proposed control mechanism, the IFT is optimized based on an objective function which is designed 

to achieve optimal trade-off between string stability (i.e., performance index of traffic oscillation 

dissipation) and information transmitted in the platoon. The controller switching is conducted after the 

IFT optimization, where the controller of each CAV will be selected based on the optimized IFT. The 

control mechanism is then evaluated using numerical experiments to showcase the effectiveness of 

improving string stability under the situation of significant communication burden during the 

occurrence of heavy traffic. Additionally, even though the control mechanism in chapter 2 can achieve 

desired performance of string stability, the characteristics of controller switching and the inevitable 

process noise during platoon control will generate choppy control command (i.e., vehicle acceleration), 

which significantly deteriorate the riding comfort of platoon control. Thereby, chapter 3 further 

incorporates the smooth switching mechanism to the control design in chapter 2. The proposed smooth 

switching mechanism includes three components: (i) IFT optimization factoring string stability and 

riding comfort; (ii) controller parameter optimization for smooth transition between controller; and (iii) 

Kalman predictor which suppresses the negative effects of noise, and predicts future vehicles states for 

conducting smoother control input. The numerical experiments demonstrate the effectiveness of the 

control mechanism in terms of preserving driving comfort and string stability in the situation of heavy 

communication burdens. Chapter 2 and chapter 3 are collaborative works with Siyuan Gong, Chang’an 

University, China. 

The computational issue mainly arises from the optimization-based real-time cooperative platoon 

control. The model predictive controller (MPC) is one of the popular approaches in the optimization-

based real-time cooperative platoon control. MPC optimizes the objective function of a series of optimal 

control problem with certain physical and safety constraints, to achieve desired platoon control 

performance. However, MPC requires an instantaneous computation of control command in each time 

step, which can be difficult given a complex nonlinear nonconvex optimization problem. This 

significantly hinders the deployment of MPC-based platoon control. To counteract the influence of 

computational barrier, chapter 4 introduces a real-time deployable MPC mechanism with first-order 

approximation (label as DMPC-FOA). The DMPC-FOA reserves certain amount of time before each 

sampling time instant to estimate the optimal control command, which provides a sufficient time for 

computation and enables the execution optimal control command at each sampling instant. Numerical 
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experiments illustrate the effectiveness of DMPC-FOA in terms of computational efficiency, and 

desired performance of asymptotical stability and string stability. The chapter 4 is a collaborative work 

with Jian Wang, Southeast University, China, Siyuan Gong, Chang’an University, China, and Lili Lu, 

Ningbo University, China. 
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2. COOPERATIVE ADAPTIVE CRUISE CONTROL FOR CONNECTED AUTONOMOUS VEHICLES BY 
FACTORING COMMUNICATION-RELATED CONSTRAINTS 

2.1 Introduction 

Traffic oscillation refers to “stop and go” traffic propagation (Li et al., 2010), which can cause 

uncomfortable driving experience, safety problems, additional energy consumption, and negative 

environmental impacts. A widely-adopted method to deal with traffic oscillations is adaptive cruise 

control (ACC), which controls the speed in pace with the preceding vehicles. The advent of vehicle-

to-vehicle (V2V) communications using dedicated short-range communication (DSRC) 

technologies is enabling vehicles to receive additional information from other connected vehicles 

and the infrastructure. This will provide more opportunities for connected autonomous vehicles 

(CAVs) to enhance their situational awareness and performance through the implementation of 

more robust system-level vehicle control strategies, especially platoon-based cooperative adaptive 

cruise control (CACC) (Nieuwenhuijze et al., 2012).  

CACC is an extension of ACC, used to minimize speed differences among vehicles in a platoon 

and maintain stable and safe headways between adjacent vehicles (Zhou et al., 2017). The CACC 

literature, discussed hereafter, assumes a platoon with pure (100%) CAVs. Typically, a CACC 

framework has four components (Li et al., 2015): (i) node dynamics (ND), which describes the 

dynamics of each vehicle in the platoon, such as second-order models (Wang et al., 2014a), or third-

order models (Guo et al., 2012); (ii) vehicle-level information flow topology (VIFT) for a CAV, 

which describes the configuration of V2V communication links from one CAV to one or more 

CAVs in the platoon, for example, predecessor-following-leader (Naus et al., 2010) and two-

predecessor-following (Zheng et al., 2017) VIFT schemes; (iii) decentralized controller, which uses 

information from other vehicles in the platoon to implement control strategies, such as 

Proportional-Integral-Derivative (PID) controller (Swaroop et al., 1996), sliding mode controller 

(Gao et al., 2018), and model predictive controller (Wang et al., 2014a; Zhou et al., 2017); and (iv) 

formation geometry, which describes the desired headway between vehicles. Recent studies have 

modeled the four components of a CAV platoon in different ways, such as the constant distance 

(CD) policy (Gong et al., 2016), and the constant time headway (CTH) policy (Zhou et al., 2017).  

Among the four CACC framework components, the VIFT is closely related to the status of V2V 

communications. Almost all existing CACC studies assume identical VIFTs for all vehicles in a 

platoon. As discussed hereafter, consistent with the real world, our study does not constrain the 

VIFTs to be identical. We label the information flow topology at the platoon level as “IFT,” which 

illustrates the configuration of V2V communication links of all vehicles in the platoon at any time 

instant. By introducing the time dimension, we consider the inherent dynamics of IFT, further 

enhancing modeling realism. By contrast, most studies using a CACC design assume an idealized 

predetermined, fixed IFT. This assumption ignores the fact that the IFT (and by implication, the 

VIFTs) can change dynamically due to V2V communication failures (Gao et al., 2018; Talebpour 

et al., 2016). A communication failure may occur due to communication interference or information 

congestion (Kim et al., 2017; Wang et al., 2018a), especially when the ambient (pure CAV) traffic 

is congested. Information congestion is the reduced quality of service when a communication 

network node carries more data than it can handle, which in the context of V2V communications 

is modeled through the potential for failure of information propagation in a V2V communications-

enabled traffic network (Wang et al., 2018a). Communication interference typically refers to the 



 

5 
 

disruption of a signal as it travels between a sender and a receiver. In the CACC platoon context, 

though the transmission distance is close enough, interference can arise due to the ambient traffic 

conditions. A critical reason for interference from other vehicles is the mechanism of the DSRC 

protocol defined by IEEE 802.11p. In telecommunications, information is transmitted via channels. 

If more than one sender tries to send information via the same channel at the same time, it will 

cause interference for both vehicles, and the resulting information collision can cause the 

transmission to fail. To reduce the probability of information collision, IEEE 802.11p inherits the 

contention mechanism from IEEE 802.11, which requires every sender to compete for the sending 

chance. Thereby, the probability of information collision is decreased through this mechanism. 

However, for V2V communications, if a sender fails to win a sending chance before a new message 

is generated, the old message will be dropped, and is counted as a communication failure (Qiu et 

al., 2015). Other factors like the hidden node effect and capture effect can also cause 

communication failures. In all such cases, the distance between some senders is too large for them 

to sense each other or to keep transmitting signals with enough magnitude so that they can be 

successfully received. Hence, sender-based communication failure is addressed in this study. 

Receiver-related failure is not considered because the spacing between vehicles in a platoon is small 

enough that a message can be received as long as it is sent.  

If communication failures occur, a CACC with a fixed IFT (CACC-FIFT) may execute an 

erroneous control action or degrade to adaptive cruise control (ACC), which diminishes platoon 

performance related to mobility, stability, and even safety. To mitigate the negative effects of 

communication failure, a few studies have proposed novel CACC strategies for a pure CAV platoon 

by considering dynamic IFT degeneration scenarios. Here, a degeneration scenario for a given IFT 

refers to any configuration with one or more link communication failures for that IFT. Gong et al. 

(2019) propose a CACC strategy with dynamic IFT degeneration scenarios (CACC-DIFT), in 

which a PD controller combined with an acceleration feedforward filter is designed to counteract 

the IFT dynamics in the platoon. Depending on the IFT degeneration scenario that unfolds at 

different time instants, the CACC will change the controller parameters to maintain string stability 

performance rather than degrade to ACC. Gao et al. (2018) design a distributed sliding mode 

controller based on a linear matrix inequality method to ensure string stability under uncertain but 

eigenvalue-bounded IFT degeneration scenarios. However, both these studies consider IFT 

dynamics passively, implying that the controller uses only the functioning links when others have 

V2V communication failures. While such passive approaches may improve the control 

performance under unreliable V2V networks, their performance is constrained by ambient traffic 

conditions which determine the communication failure probabilities of the various IFT links. That 

is, when the ambient traffic density is higher, these probabilities are higher which indicates the 

potential lower robustness of the IFT. Further, studies (Hafeez et al. 2013) suggest that the IFT in 

terms of the number of vehicles in the platoon with activated “send” functionality of V2V devices 

within the communication range, is another key factor that impacts communication failures. That 

is, these failure probabilities are higher if several CAVs within communication range have their 

“send” functionality activated, which inspires the key idea of this study that communication failure 

probabilities can be reduced (i.e., the robustness of the IFT can be improved in terms of the 

communication reliability) by deactivating the “send” functionality of a subset of CAVs. However, 

we cannot deactivate the “send” functionality of all CAVs in a platoon as it will diminish the 

platoon’s awareness capability. If all CAVs deactivate their “send” functionality, the IFT is at its 

most robust in that no communication failures will occur. Then, all CAVs will operate in the ACC 
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mode which leads to poor theoretical performance, implying that the expected performance will 

not be good. By contrast, the best string stability under perfect communication conditions is 

achieved when all CAVs activate their “send” functionality, though the probability of 

communication failure is also at its highest (i.e. low robustness of IFT), indicating poor robustness 

for platoon control. Then, the expected string stability performance is also not good. Hence, there 

is a tradeoff between the theoretical string stability of an IFT and its robustness. To account for 

these real-world characteristics, our study proposes the novel idea of proactively controlling in real 

time the number of platoon vehicles with “send” functionality activated based on the unfolding 

ambient traffic conditions so as to enhance communication reliability, with the objective of 

maximizing platoon performance in terms of string stability. We label this strategy the CACC with 

dynamically optimized IFT, or CACC-OIFT, which aims to achieve this tradeoff and enhance the 

expected platoon performance in terms of the string stability with communication constraints. 

Enabling the CACC-OIFT strategy entails addressing some key challenges. First, to account for the 

time-varying nature of communication failures, all degeneration scenarios of an IFT and their 

probabilities should be determined. The probability of each degeneration scenario depends on the 

probability of the communication failure of each link in the IFT, which is itself dynamic and 

depends on the unfolding traffic conditions. Second, the platoon control performance in terms of 

string stability needs to be theoretically formulated in the expected sense over all degeneration 

scenarios for an IFT. While the existing literature uses simulation-based methods (Swaroop et al., 

1996; Schakel et al., 2010; Nieuwenhuijze et al., 2012; Zhou et al., 2017) to numerically determine 

control performance, it is difficult to integrate such approaches in a rigorous optimization model. 

Third, an adaptive controller is needed to control the car-following behaviors of the vehicles in the 

CAV platoon based on the unfolding degeneration scenarios for the optimal IFT at different time 

instants. Hence, there is the need to factor IFT dynamics while ensuring string stability. 

The proposed CACC-OIFT strategy for a time period seeks to determine the optimal IFT that 

maximizes the expected string stability performance to damp traffic oscillations by deactivating or 

activating the “send” functionality of the V2V communication devices of the vehicles in the platoon, 

and deploys it for every time instant within that period based on the unfolding degeneration 

scenarios for that IFT due to V2V communication failures. It includes an IFT optimization model 

and an adaptive Proportional-Derivative (PD) controller. Fig. 2.1 illustrates the conceptual 

flowchart of CACC-OIFT and its operational deployment. Fig. 2.1(a) shows the various 

components of CACC-OIFT and their linkages in the time dimension. Given the ambient traffic 

conditions and platoon size at some time instant 𝛥𝜏 before the start of time period 𝜏 (the period 

from time instant 𝑡𝜏  to 𝑡𝜏+1  (i.e., [𝑡𝜏, 𝑡𝜏+1) ) in Fig. 2.1(b)), the IFT optimization model first 

identifies the candidate IFTs corresponding to the platoon size and their degeneration scenarios. 

Note that the set of all possible IFTs and their degenerations scenarios is determined offline as they 

are time-invariant and can be predetermined. The subset of IFTs corresponding to the current 

platoon size denotes the candidate IFT set. Second, the ambient traffic conditions are used to 

determine the probabilities of the degeneration scenarios for each candidate IFT as these traffic 

conditions determine the V2V (link) communication failure probabilities. Third, the string stability 

for each degeneration scenario for each candidate IFT is obtained from the predetermined string 

stabilities for all degeneration scenarios for all possible IFTs, computed offline using the transfer 

function in frequency domain of the given adaptive PD controller. This study uses the speed 

oscillation energy of the platoon as an indicator of string stability performance, which treats the 

speed oscillation as a signal and computes the sum of speed oscillation energies of all vehicles in 
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the platoon in frequency domain. A lower value for this sum implies that traffic oscillations are 

damped as they propagate through the platoon, implying better string stability. The optimal IFT 

(activations and deactivations of “send” functionalities for the platoon vehicles) for time period 𝜏 
is determined as the candidate IFT which has the maximum expected string stability across all of 

its degeneration scenarios. 

As shown in Fig. 2.1(b), the IFT optimization model will determine the optimal IFT for time period 

𝜏 at time instant 𝑡𝜏 − 𝛥𝜏 as it takes 𝛥𝜏 time to solve for the optimal IFT. Note that it is assumed 

that the ambient traffic conditions and platoon size do not vary within the time period. From Fig. 

2.1(a), the operational deployment of CACC-OIFT starts by proactively deploying the optimal IFT 

for the first time instant 𝑡𝜏 of period 𝜏. However, due to V2V communication failures, different 

time instants in period 𝜏 can have a different degeneration scenario of the optimal IFT manifest. 

The adaptive PD controller continuously determines the car-following behaviors of the vehicles 

based on the unfolding degeneration scenario for each time instant  (i.e., 𝑡𝜏 , 𝑡𝜏 + 1,…, 𝑡𝜏+1) in 

period 𝜏, thereby controlling vehicular location and dynamics. As shown in Fig. 2.1(b), at 𝑡𝜏+1 −
𝛥𝜏, the IFT optimization model will update the optimal IFT for the next time period 𝜏 + 1. This 

process continues for the time horizon of interest. 

In CACC-OIFT implementation, after the leading vehicle receives information on ambient traffic 

conditions at 𝑡𝜏 − 𝛥𝜏, it distributes computational tasks to the other platoon vehicles which perform 

these computations in parallel to enable computational efficiency. Then, the leading vehicle collects 

the results of the computations and determines the optimal IFT to deploy in the next cycle. This 

ensures that the computing process is completed within 𝛥𝜏. Note that the length of each time period 

𝜏 is flexible; however, we only update the optimal IFT when the platoon size or the ambient traffic 

state related to the traffic oscillations changes. According to Li et al. (2010), the time-invariant 

pattern of traffic oscillations usually lasts more than 10 minutes, suggesting possible values for the 

update frequency.  

 

 

Figure 2.1. (a) Conceptual flowchart of CACC-OIFT; (b) Operational deployment of CACC-OIFT. 

As the IFT optimization model optimizes the IFT for each time period τ and the adaptive PD 

controller controls the car-following behaviors for each time instant t, we will formulate the IFT 

optimization model for one time period in Section 2.3 and the adaptive PD controller for a time 

instant within that time period in Section 2.4. Hence, for notational convenience, we will omit τ 

and t in these sections. A two-step algorithm is developed to solve the IFT optimization problem, 
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and several critical properties are proved; for example, the leading vehicle in the platoon should 

always activate its “send” functionality. The effectiveness of the proposed CACC is validated using 

NGSIM field data (US DOT, 2007) in network simulator NS-3. The results reveal that the algorithm 

can solve the IFT optimization model for a platoon of considerable size (15 CAVs) in a practically 

deployable time duration (less than a minute). The proposed CACC-OIFT can significantly damp 

traffic oscillations and enhance string stability in an unreliable V2V communications context, 

outperforming CACCs with fixed IFTs or with passive adaptive schemes for IFT dynamics.  

The major contributions of the paper are as follows: 

We propose an IFT optimization model to explicitly factor the inherent IFT dynamics, and leverage 

it proactively to enhance CACC performance. Compared to passive schemes that simply 

acknowledge communication failures, a key innovation is to determine the optimal IFT by 

dynamically and proactively activating or deactivating communication devices of some CAVs in 

the platoon so as to mitigate negative effects of communication failures and maximize string 

stability while factoring communication constraints. 

As another key innovation, the speed oscillation energy in frequency domain is used to evaluate 

the platoon control performance (i.e., string stability) for a given IFT degeneration scenario. This 

study treats the speed oscillation as a signal and determines the oscillation energy of each vehicle 

based on the transfer function of the given controller. The expected oscillation energy for an IFT is 

the weighted sum of the oscillation energies over all possible degeneration scenarios. Minimizing 

the expected speed oscillation energy implies maximizing the expected string stability. 

To account for the manifestation of different degeneration scenarios of the optimal IFT at different 

time instants within the time period, we design an adaptive control based on PD feedback controller 

and acceleration feedforward filter. When the IFT degenerates, the controller determines each 

vehicle’s car-following behavior based on the information it receives at that time instant so that 

string stability is maintained.  

To the best of our knowledge, this is the first study to use rigorous mathematical analysis to improve 

platoon performance by proactively leveraging IFT dynamics and adjusting adaptive controller 

parameters. It contributes to the literature in this area and informs the design of CAV platoon 

control in practice. 

The remainder of the paper is organized as follows. Section 2.2 briefly introduces IFT and 

degeneration scenarios. Section 2.3 formulates the IFT optimization model. Section 2.4 formulates 

the adaptive controller for an IFT and its degeneration scenarios. Section 2.5 discusses several 

critical properties of the proposed CACC-OIFT strategy and discusses the solution algorithm for 

the IFT optimization problem. Section 2.6 discusses simulation-based numerical experiments and 

analyzes the results. Section 2.7 provides some concluding comments.  

2.2 IFT and degeneration scenarios 

Though the one-predecessor-following VIFT is the most commonly-used scheme, the more 

computationally intensive1 two-predecessor-following VIFT is used in this study to illustrate the 

CACC-OIFT strategy. It should be noted that our model can be extended to a k-predecessor-

                                                           
1 In a VIFT, if the V2V device sends information to c other devices, it has 2𝑐 communication statuses. 
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following VIFT without loss of generality; however, computational efficiency and communication 

reliability issues can arise as more predecessors are considered. Fig. 2.2 shows a CAV platoon in 

which a fully-activated two-predecessor-following VIFT is used in the proposed adaptive PD 

controller. The information of each CAV is delivered to the two vehicles immediately following it 

through V2V communications. CAV 𝑖 obtains the state of its two predecessors (𝑖 − 1 and 𝑖 − 2), 

such as location (𝑥𝑖−1 and 𝑥𝑖−2), speed (𝑥̇𝑖−1 and 𝑥̇𝑖−2) and acceleration (𝑥̈𝑖−1 and 𝑥̈𝑖−2), through 

V2V communications. Also, vehicle 𝑖  can detect the kinematic state (𝑥𝑖−1  and 𝑥̇𝑖−1 ) of its 

immediate predecessor 𝑖 − 1 through onboard sensors such as radar, Lidar and camera, and its own 

kinematic state through GPS. The ambient traffic conditions, such as average density 𝑘̅ and the 

trajectory oscillations in frequency domain 2  𝑋(𝑗𝜔) , can be obtained through vehicle-to-

infrastructure (V2I) communications, where 𝜔 is the angular frequency, and 𝑗 = √−1. 

CAV 1 CAV 2 CAV 3 CAV 4

Leading CAV

Following CAV

V2V communication

Traffic direction

 

Figure 2.2. CAV platoon with a two-predecessor-following VIFT scheme. 

 

Since CACC-OIFT involves dynamically deactivating or activating the “send” functionality of 

V2V communication devices for vehicles in the platoon, we introduce a vector 𝝃 =
[𝜂0, 𝜂1, … , 𝜂𝑁], 𝜂𝑖 ∈ {0, 1} for 𝑖 = 0,1, … ,𝑁 to indicate the IFT of a platoon with 𝑁 + 1 vehicles, 

where 𝜂𝑖 indicates the status of the V2V communication device of vehicle 𝑖: 𝜂𝑖 = 0, when “send” 

functionality of V2V communication is deactivated; otherwise, 𝜂𝑖 = 1. For example, the IFT in 

Fig. 2.2 has 𝝃 = [1, 1, 1, 1, 1]. If some vehicles turn off their “send” functionality, such as vehicles 

1, 3 and 4 in Fig. 2.3(a), the IFT has 𝝃 = [1, 0, 1, 0, 0]. We denote 𝛀 as the set of all possible IFTs 

that follow the two-predecessor-following scheme. 

CAV 0 CAV 1 CAV 2 CAV 3 CAV 4

(a)

CAV 0 CAV 1 CAV 2 CAV 3 CAV 4

(b)

CAV 0 CAV 1 CAV 2 CAV 3 CAV 4

(c)

CAV 0 CAV 1 CAV 2 CAV 3 CAV 4

(d)

 

Figure 2.3. Example of an IFT and its degeneration scenarios: (a) IFT with “send” functionalities of 

CAVs 1, 3 and 4 deactivated; (b) Degeneration scenario with CAV 2 failing to send message; (c) 

Degeneration scenario with CAV 0 failing to send message; (d) Degeneration scenario with both CAVs 0 

and 2 failing to send messages. 

Though temporarily switching off V2V communications of some vehicles can improve the success 

rate of other V2V communication links, communication failures cannot be eliminated as they also 

depend on ambient traffic conditions. As discussed earlier, we focus on failures involving the 

sending process. Due to sender failure, IFT 𝝃 has degeneration scenarios 𝝃𝒅  with probabilities 

𝑃𝑑(𝝃𝒅), which can be formulated in a contention model of V2V communications (Qiu et al., 2015). 

Here, 𝑑  is the index of degeneration scenarios, 𝑑 = 1,…𝐷(𝝃) , where 𝐷(𝝃) = 2∑  𝜂𝑖
𝑁
𝑖=0 . The 

                                                           
2 The traffic oscillation in frequency domain measures oscillation amplitudes in different frequencies, which can be 

obtained through Fourier Transform of the ambient vehicles’ trajectory data. 
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degeneration scenario satisfies 𝝃𝒅(𝝃) = [𝜂0,𝑑, 𝜂1,𝑑, … , 𝜂𝑁,𝑑], 𝜂𝑖,𝑑 ∈ {0, 1}, 𝜂𝑖,𝑑 ≤ 𝜂𝑖  for 𝑖 =

0,1, … ,𝑁, which indicates that sender failure only exists for a vehicle with an activated “send” 

functionality. Hence, degeneration scenario 𝝃𝒅  is related to IFT 𝝃 . For example, the IFT 𝝃 =
[1, 0, 1, 0, 0]  in Fig. 2.3(a) has four degeneration scenarios: 𝝃𝟏(𝝃) = [1, 0, 1, 0, 0] , 𝝃𝟐(𝝃) =
[1, 0, 0, 0, 0], 𝝃𝟑(𝝃) = [0, 0, 1, 0, 0] and 𝝃𝟒(𝝃) = [0, 0, 0, 0, 0], which are shown in Figs. 2.3 (a)-(d), 

respectively. We denote 𝛀𝐝(𝝃) as the set of all possible degeneration scenarios 𝝃𝒅(𝝃) for IFT 𝝃. 

To illustrate the need for controller design, we also analyze the V2V communication status from 

the receiver side. Based on different sender failures or deactivated “send” functionalities, a receiver 

(i.e., vehicle 𝑖  in Fig. 2.4) has four possible communication statuses (Figs. 2.4(a)-(d)). For a 

following vehicle 𝑖, if both predecessors (i.e., 𝑖 − 1 and 𝑖 − 2) activate communication devices and 

send information successfully, then the following vehicle 𝑖  will be controlled by a CACC1 

controller with the two-predecessor-following scheme in Fig. 2.4(a). Figs. 2.4(b) and (c) show the 

cases where one sender fails to broadcast its message. In these cases, CAV 𝑖  can detect the 

kinematic state of its immediate predecessor 𝑖 − 1 , and obtain one predecessor vehicle’s 

acceleration through V2V communications. When both senders fail (Fig. 2.4(d)), CAV 𝑖 detects 

the surrounding environment only through onboard sensors. Then, the CACC will degrade to ACC 

to update the acceleration command based on the relative spacing and speed between CAVs 𝑖 and 

𝑖 − 1 . Accordingly, a vector is introduced 𝜁(𝝃𝒅) = [𝜁1(𝝃𝒅(𝝃)), … , 𝜁𝑁(𝝃𝒅(𝝃))], 𝜁𝑖 ∈
{1, 2, 3, 4} for 𝑖 = 0,1, … ,𝑁  in Equation (2.1) to indicate receiver status of a platoon with a 

degeneration scenario 𝝃𝒅 , where 𝜁𝒊(𝝃𝒅(𝝃)) = 1,2,3,4  indicates that vehicle 𝑖  is controlled by 

CACC1, CACC2, CACC3, or ACC, respectively. 

 

𝜁(𝝃𝒅(𝝃)) = [

𝜁0(𝝃𝒅(𝝃))

𝜁1(𝝃𝒅(𝝃))
⋮

𝜁𝑁(𝝃𝒅(𝝃))

]

𝑇

= [

4
4
⋮
4

]

𝑇

− 𝝃𝒅(𝝃)

[
 
 
 
 
 
0 2
⋮ 0

1 0
2 ⋱

⋯ 0
⋱ ⋮

⋮ ⋱
⋮ ⋱

⋱ ⋱
⋱ ⋱

⋱ 0
2 1

⋮ ⋱
0 ⋯

⋱ ⋱
⋯ ⋯

0 2
⋯ 0]

 
 
 
 
 

 (2.1) 

CAV i-2 CAV i-1 CAV i CAV i-2 CAV i-1 CAV iCAV i-2 CAV i-1 CAV i CAV i-2 CAV i-1 CAV i

(a) (b) (c) (d)

 

Figure 2.4. Communication statuses of: (a) CACC1; (b) CACC2; (c) CACC3; (d) ACC. 

 

2.3 Formulation of optimization model for IFT 

This section analytically derives the IFT optimization model for a time period. As discussed earlier, 

due to the dynamics of V2V communication failures, a platoon with IFT 𝝃 may operate under 

different time-varying degeneration scenarios 𝝃𝒅(𝝃) at different time instants with corresponding 

probabilities 𝑃𝑑(𝝃𝒅(𝝃) ). The probabilities of degeneration scenarios of IFT 𝝃  satisfy 
∑ 𝑃𝑑(𝝃𝒅(𝝃))𝝃𝒅(𝝃)∈𝛀𝒅(𝝃) = 1. The platoon control performance is a function of the degeneration 

scenarios. Since degeneration scenario 𝝃𝒅 is a function of IFT 𝝃, the control performance under it 

is denoted by 𝐸𝒅(𝝃𝒅(𝝃)). By considering all possible degeneration scenarios 𝛀𝐝(𝝃), the expected 
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platoon control performance 𝐸(𝝃) for IFT 𝝃 under communication failures is: 

𝐸(𝝃) =∑ 𝑃𝑑(𝝃𝒅(𝝃))𝐸𝒅(𝝃𝒅(𝝃))
𝝃𝒅(𝝃)∈𝛀𝒅(𝝃)

 (2.2) 

Hence, the choice of IFT 𝝃 significantly affects the expected platoon performance, implying the 

need to determine the IFT that optimizes the expected performance 𝐸(𝝃) under the CACC strategy. 

Optimizing the IFT in terms of 𝐸(𝝃) aims to achieve tradeoff between the control performance 

under perfect communication conditions and the robustness of the IFT in terms of communication 

reliability. We summarize the IFT optimization model, denoted as OPT-I, as follows:  

OPT-1  OPT
𝝃∈𝛀

𝐸(𝝃) =∑ 𝑃𝑑(𝝃𝒅(𝝃))𝐸𝒅(𝝃𝒅(𝝃))
𝝃𝒅(𝝃)∈𝛀𝒅(𝝃)

     

s.t

. 
𝝃 = [𝜂0, 𝜂1, … , 𝜂𝑁], 𝜂𝑖 ∈ {0, 1} for 𝑖 = 0,1, … , 𝑁 

 𝛀 = {[𝜂0, 𝜂1, … , 𝜂𝑁]|𝜂𝑖 ∈ {0, 1} for 𝑖 = 0,1, … ,𝑁 

 𝝃 ∈ 𝛀 

 𝝃𝒅(𝝃) = [𝜂0,𝑑, 𝜂1,𝑑, … , 𝜂𝑁,𝑑], 𝜂𝑖,𝑑 ∈ {0, 1}, 𝜂𝑖,𝑑 ≤ 𝜂𝑖  for 𝑖 = 0,1, … , 𝑁 

 𝛀𝒅(𝝃) = {[𝜂0,𝑑, 𝜂1,𝑑 , … , 𝜂𝑁,𝑑] | 𝜂𝑖,𝑑 ∈ {0, 1}, 𝜂𝑖,𝑑 ≤ 𝜂𝑖  for 𝑖 = 0,1, … ,𝑁 

 ∑ 𝑃𝑑(𝝃𝒅)𝝃𝒅(𝝃)∈𝛀𝒅(𝝃) = 1, for any 𝝃 ∈ 𝛀 

 

(2.3) 

The first three constraints of OPT-I relate to the decision variable 𝝃. The first constraint states that 

𝝃 is a binary 0-1 vector. The second constraint is the set 𝛀 of IFTs 𝝃 corresponding to the two-

predecessor-following VIFT. The third constraint states that 𝝃 belongs to 𝛀. The remaining three 

constraints correspond to the degeneration scenario 𝝃𝒅(𝝃) . The fourth constraint shows the 

relationship between degeneration scenario 𝝃𝒅(𝝃) and IFT 𝝃. The fifth constraint indicates that the 

set 𝛀𝐝(𝝃) includes all possible degeneration scenarios for IFT 𝝃. The last constraint states that the 

probabilities of the degeneration scenarios for an IFT 𝝃 should sum up to 1. 

Next, in Section 2.3.1, the platoon control performance is first characterized in terms of the speed 

oscillation energy of the vehicles in the platoon, which is then linked to string stability. Section 

2.3.2 first discusses the determination of the probabilities of the degeneration scenarios. Then, it 

characterizes the expected string stability for an IFT 𝝃 in terms of the speed oscillation energies of 

the platoon vehicles. Finally, the IFT optimization model is formulated in terms of optimizing the 

expected speed oscillation energies to reflect the expected string stability. Note that other 

performance metrics like energy consumption and cost can be included in this model using 

additional weighted terms in the objective function or by adding external constraints. Further, the 

focus on string stability does not affect safety considerations in the sense that channels (Qiu et al., 

2015) used to propagate safety-related messages are different from those used for beacon messages 
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(which represent the focus of this study).  

2.3.1 Speed oscillation energy of a degeneration scenario for an IFT and its linkage to 
string stability 

The traffic oscillations can be measured by the speed profiles of vehicles in the traffic flow (Li 

et al., 2012), which can be interpreted as a signal with specific energy density propagating 

through a certain medium (i.e., a platoon of vehicles). Correspondingly, this study quantifies 

traffic oscillations by introducing speed oscillation energy e𝑖 in frequency domain for vehicle 

𝑖: 

𝑒𝑖 = ∫ 𝑉𝑖
2(𝑗𝜔)𝑑𝜔

+∞

0

 (2.4) 

where  𝑗 = √−1. 𝑉𝑖
2(𝑗𝜔)is the Energy Spectral Density (ESD) of vehicle speed. Thereby, the 

oscillation energy of a vehicle can be calculated by integrating its speed ESD over all 

frequencies. The speed oscillation energy of all vehicles in a platoon under a degeneration 

scenario 𝝃𝒅(𝝃) is given by:  

𝐸𝒅(𝝃𝒅(𝝃)) =∑ 𝑒𝑖
𝑁

𝑖=0
 = ∑ [∫ 𝑉𝑖

2(𝑗𝜔)𝑑𝜔
+∞

0

]
𝑁

𝑖=0
 (2.5) 

Since a platoon with CACC is an interconnected system, the speed oscillation energy of each 

following vehicle will be determined by the speed oscillation energy of its predecessors and 

the characteristics of its CACC controller. The relationship between the speed oscillation 

energy of the leading vehicle 0 and any following vehicle 𝑖 can be obtained by recursively 

linking the speed oscillation energy of the following vehicle and its predecessors. As discussed 

in Section 2.2, the trajectory oscillation information can be directly obtained through V2I 

communications, unlike speed oscillation information which is an indirect second-order effect. 

Hence, based on the CACC controller used in degeneration scenario 𝝃𝒅(𝝃), a transfer function 

SS𝑋,𝑖(𝑗𝜔, 𝝃𝒅(𝝃))  is introduced to measure the propagation of trajectory oscillations in 

frequency domain from the leading vehicle 0 to any following vehicle 𝑖:  

SS𝑋,𝑖(𝑗𝜔, 𝝃𝒅(𝝃))  =
𝑋𝑖(𝑗𝜔)

𝑋0(𝑗𝜔)
,       𝑖 = 1,… , 𝑛 

(2.6) 

where 𝑋𝑖(𝑗𝜔) is the position frequency response of vehicle 𝑖. Next, we assume that the position 

frequency response of the leading vehicle 𝑋0(𝑗𝜔) follows the ambient traffic oscillations in 

frequency domain 𝑋(𝑗𝜔) (i.e., 𝑋0(𝑗𝜔) = 𝑋(𝑗𝜔)), since the movement of the leading vehicle 

is affected by the ambient traffic oscillations.  

Given the degeneration scenario 𝝃𝒅(𝝃), SS𝑋,𝑖(𝑗𝜔, 𝝃𝒅(𝝃))  is a function of 𝜔  with a set of 

predetermined controller parameters. Different transfer functions will be generated under 

different controllers and IFT degeneration scenarios. Section 2.4 provide more details on 

SS𝑋,𝑖(𝑗𝜔, 𝝃𝒅(𝝃)). 

Next, we derive the speed frequency response 𝑉𝑖(𝑗𝜔) for all vehicles using the leading vehicle 

position frequency response 𝑋0(𝑗𝜔) information. To do so, first, the inverse Fourier transform 

is performed to obtain the trajectory information of vehicle 𝑖 in time domain. 
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𝑥𝑖(𝑡) =  ∫ 𝑋𝑖(𝑗𝜔)𝑒
2𝜋𝑡𝑗𝜔𝑑𝜔

+∞

0

= ∫ SS𝑋,𝑖(𝑗𝜔, 𝝃𝒅(𝝃))𝑋0(𝑗𝜔)𝑒
2𝜋𝑡𝑗𝜔𝑑𝜔

+∞

0

 

(2.7) 

Then, the derivative of the vehicle trajectory provides the speed profile of vehicle 𝑖 in time 

domain. 

𝑣𝑖(𝑡) =  
𝑑𝑥𝑖(𝑡)

𝑑𝑡
=  ∫ 2𝜋𝑗𝜔SS𝑋,𝑖(𝑗𝜔, 𝝃𝒅(𝝃))𝑋0(𝑗𝜔)𝑒

2𝜋𝑡𝑗𝜔𝑑𝜔
+∞

0

 (2.8) 

Comparing Equation (2.8) with the inverse Fourier transform of speed frequency response in 

Equation (2.9), 

𝑣𝑖(𝑡) =  ∫ 𝑉𝑖(𝑗𝜔)𝑒
2𝜋𝑡𝑗𝜔𝑑𝜔

+∞

0

 (2.9) 

the speed frequency response is derived as follows: 

𝑉𝑖(𝑗𝜔) = 2𝜋𝑗𝜔SS𝑋,𝑖(𝑗𝜔, 𝝃𝒅(𝝃))𝑋0(𝑗𝜔) (2.10) 

Combining Equations (2.5) and (2.10), the speed oscillation energy of the vehicles in the 

platoon under a degeneration scenario 𝝃𝒅(𝝃) can be formulated as: 

𝐸𝑑(𝝃𝒅(𝝃)) =  ∑ ∫ 𝑉𝑖
2(𝑗𝜔)𝑑𝜔

+∞

0

𝑁

𝑖=0

= 4𝜋2∑ ∫ 𝜔2SS𝑋,𝑖
2 (𝑗𝜔, 𝝃𝒅(𝝃))𝑋0

2(𝑗𝜔)𝑑𝜔
+∞

0

𝑁

𝑖=0
 

(2.11) 

The transfer function SS𝑋,𝑖(𝑗𝜔, 𝝃𝒅(𝝃)) is commonly used to infer string stability (Naus et al., 

2010). A lower value for SS𝑋,𝑖(𝑗𝜔, 𝝃𝒅(𝝃)) reflects better string stability performance as it 

implies smoother traffic flow. From Equation (2.11), for a given leading vehicle position 

frequency response 𝑋0(𝑗𝜔), a smaller platoon speed oscillation energy 𝐸𝑑(𝝃𝒅(𝝃)) indicates a 

lower SS𝑋,𝑖(𝑗𝜔, 𝝃𝒅(𝝃)), implying better string stability performance.   

 

2.3.2 Probabilities of degeneration scenarios and expected string stability for an IFT 

Since the optimal IFT implies that some vehicles have their “send” functionality activated and 

others have it deactivated, a communication failure implies that an activated “sender” vehicle 

fails to broadcast its message at a specific time instant. This is a manifestation of a degeneration 

scenario for this IFT. As discussed in Section 2.2.1, sender failure relates to information 

collision during message broadcasting in the DSRC protocol. This collision occurs when two 

senders within communication range send information to a receiver at the same time. During 

the sending process, each sender uses a contention window (CW) to compete for a sending 

chance. Each sender will randomly select an integer value in the range of [0, CW − 1], to 

determine when in this window it will send the message. If more than one sender chooses the 

same integer value, a collision occurs. Note that we use the DSRC protocol here as an example 

of the communication protocol to illustrate our CACC-OIFT strategy because it is a mature 
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and proven technology that has been invested in by both the public and private sectors. 

However, the proposed strategy can be used with any communication protocol with capacity 

upper bound where the communication success rate depends on the density of vehicles with 

communication ability. Hence, it is always possible to improve platoon performance by 

optimizing IFT as in the future more information (traffic, entertainment, weather, e-commerce, 

etc.) will sought to be propagated or shared among vehicles, even if high-capacity protocols 

such as 5G are ultimately adopted. 

In the MAC level protocol (i.e., IEEE 802.11), collision probability can be reduced by 

increasing the contention window CW size and/or implementing a retransmission scheme. 

However, both these methods increase time delay, reducing the timeliness of information 

propagation. For example, if a collision happens, the sender will choose a new contention 

window and attempts to retransmit the same information after the previous contention window 

ends (Hafeez et al. 2013). This will lead to delays in the information reaching the receiver, 

worsening the performance of the real-time controller. Hence, these two methods are not 

suitable for CACC. Further, as information is generated continuously in the CAV context, if a 

sender fails to win the sending chance before the next information is generated, the previous 

information will be dropped, and will therefore also be identified as a sender failure (Qiu et al. 

2015). Therefore, a retransmission scheme is not considered here and the contention window 

CW size is set to a small value. Also, usually communication time delay is not large compared 

to the control sampling period and will not significantly impact platoon performance. Based 

on these assumptions, we do not consider communication delay here. 

In Qiu et al. (2015), a contention model with saturated and unsaturated communication traffic 

is developed using a Markov chain. The success rate of sending message for vehicle 𝑖 is: 

𝑝𝑖,sat =  2(1 − 𝑏𝑖)(1 − 2𝑏𝑖 + CW)
−1 (2.12) 

where the channel busy rate 𝑏𝑖 for sender vehicle 𝑖 is: 

𝑏𝑖 = 1 − 𝑒
−𝜌̅𝑖(𝝃)𝑝𝑖,sat (2.13) 

Here,  𝜌̅𝑖(𝝃) is the average number of vehicles with activated “send” functionalities within 

communication range 𝑅 of vehicle 𝑖. Given the average density (𝑘̅) of the ambient traffic flow, 

the average number of vehicles within the communication range 𝑅 is given by 𝑚 = ⌊𝑅𝑘̅⌋. 
Then, the vector of 𝜌̅(𝝃) = [𝜌̅0(𝝃), 𝜌̅1(𝝃),… , 𝜌̅𝑁(𝝃)] is: 

𝜌̅(𝝃) = 𝝃𝑴 (𝑘̅) (2.14) 

where, 𝑴 (𝑘̅) is a N-by-N 2𝑚 + 1 diagonal matrix whose non-zero elements are 1 if 𝑚 < 𝑁. 

Otherwise, M is a N-by-N matrix in which all elements have the value 1. 

Combining Equations (2.12) and (2.13), the success rate of sending, 𝑝𝑖,sat , can be solved 

numerically based on a method by Qiu et al. (2012), and for an IFT 𝝃, is denoted as 𝑝𝑖,𝑠𝑎𝑡(𝝃).  

Since the V2V device bandwidth and its impact are not considered, a contention model with 

unsaturated communication is implemented (Qiu et al., 2015). The success rate 𝑝𝑖,𝑢𝑛𝑠𝑎𝑡 of a 

sender vehicle 𝑖 in one attempt is: 

𝑝𝑖,𝑢𝑛𝑠𝑎𝑡(𝝃) = [𝑘1 log(𝜌̅𝑖(𝝃)) + 𝑘2CW + 𝑘3]𝑝𝑖,𝑠𝑎𝑡(𝝃) (2.15) 

where 𝑘1, 𝑘2, 𝑘3 are fitting coefficients. In our numerical experiments, they are fitted using the 

simulation results in NS-3 through linear regression.  
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After obtaining the success rate of a sender vehicle, the probabilities of the degeneration 

scenarios of an IFT due to sender failure can be calculated. When the IFT degenerates from 𝝃 

to 𝝃𝒅 , two sets 𝑨𝒅(𝝃𝒅(𝝃)) and 𝑩𝒅(𝝃𝒅(𝝃)) are introduced for the indices of vehicles with 

successful and unsuccessful broadcast status, respectively, which satisfy 𝑨𝒅(𝝃𝒅(𝝃)) = {𝑖|𝜂𝑖 =
1, 𝜂𝑖,𝑑 = 1, 𝑖 = 0,… ,𝑁}  and 𝑩𝒅(𝝃𝒅(𝝃)) = {𝑖|𝜂𝑖 = 1, 𝜂𝑖,𝑑 = 0, 𝑖 = 0,… ,𝑁} . Hence, the 

probability of the degeneration from 𝝃 to 𝝃𝑑 is: 

𝑃𝑑(𝝃𝒅(𝝃)) =  ∏ 𝑝𝑖,unsat
𝑖∈𝑨𝒅(𝝃)

∏ (1− 𝑝𝑖,unsat)
𝑖∈𝑩𝒅(𝝃)

 (2.1

6) 

The probability of each degeneration scenario is independent of its string stability performance. 

By substituting Equations (2.11) and (2.16) into OPT-I, the optimization model can be 

reformulated as OPT-II. 

OPT-

II  min
𝝃∈𝛀

4𝜋2 ∑ [ ∏ 𝑝𝑖,unsat
𝑖∈𝑨𝒅(𝝃)

∑ (1

𝑖∈𝑩𝒅(𝝃)𝝃𝒅(𝝃)∈𝛀𝒅(𝝃)

− 𝑝𝑖,unsat)∑∫ 𝜔2SS𝑋,𝑖
2 (𝑗𝜔, 𝝃𝒅(𝝃))𝑋0

2(𝑗𝜔)𝑑𝜔
+∞

0

𝑁

𝑖=1

] 

 

(2.17) 

s.t. 𝝃 = [𝜂0, 𝜂1, … , 𝜂𝑁], 𝜂𝑖 ∈ {0, 1} for 𝑖 = 0,1, … , 𝑁 

 𝛀 = {[𝜂0, 𝜂1, … , 𝜂𝑁]|𝜂𝑖 ∈ {0, 1} for 𝑖 = 0,1, … ,𝑁} 

 𝝃 ∈ 𝛀 

 𝝃𝒅(𝝃) = [𝜂0,𝑑, 𝜂1,𝑑, … , 𝜂𝑁,𝑑], 𝜂𝑖,𝑑 ∈ {0, 1}, 𝜂𝑖,𝑑
≤ 𝜂𝑖  for 𝑖 = 0,1, … ,𝑁 

 𝛀𝒅(𝝃) = {[𝜂0,𝑑, 𝜂1,𝑑 , … , 𝜂𝑁,𝑑] | 𝜂𝑖,𝑑 ∈ {0, 1}, 𝜂𝑖,𝑑
≤ 𝜂𝑖  for 𝑖 = 0,1, … ,𝑁} 

 ∑ 𝑃𝑑(𝝃𝒅)𝝃𝒅(𝝃)∈𝛀𝑑(𝝃) = 1, for any 𝝃 ∈ 𝛀 

 𝑨𝒅(𝝃𝒅(𝝃)) = {𝑖|𝜂𝑖 = 1, 𝜂𝑖,𝑑 = 1, 𝑖 = 0,… ,𝑁} 

 𝑩𝒅(𝝃𝒅(𝝃)) = {𝑖|𝜂𝑖 = 1, 𝜂𝑖,𝑑 = 0, 𝑖 = 0, … , 𝑁} 

OPT-II is a mixed binary-integer optimization problem. It is almost identical to OPT-I, but has 

two additional constraints at the end related to the successful and unsuccessful broadcast status 

under the degeneration scenario 𝝃𝒅(𝝃) for IFT 𝝃, respectively. The objective function seeks 

the IFT whose most likely degeneration scenarios have lower speed oscillation energies (or, 

higher string stability performance). Section 2.5 proposes an algorithm to solve OPT-II and 

discusses its characteristics. 

 

2.4 Formulation of adaptive controller for degeneration scenarios of IFT 

We propose an adaptive Proportional-Derivative (PD) controller based on a two-predecessor-

following scheme. First, we introduce the control structure (including vehicle dynamics, spacing 

policy, and feedforward and feedback sub-controllers) that can adapt to any IFT and its 
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degeneration scenarios. Next, we determine several critical parameters to ensure the head-to-tail 

string stability of the platoon and improve the capability for measurement noise mitigation for 

individual vehicles. The transfer function SS𝑋,𝑖(𝑗𝜔, 𝝃𝒅(𝝃))) is used in the IFT optimization model 

as the indicator of string stability performance for all degeneration scenarios 𝝃𝒅(𝝃) of IFT 𝝃. 

2.4.1 Control structure 

 
Figure 2.5. Schematic of the adaptive PD controller. 

 

The schematic of the adaptive PD controller for vehicle 𝑖 is illustrated in Fig. 2.5. 𝑈𝑖 represents 

the control command, which consists of control feedback 𝑈𝑏,𝑖 from the spacing error 𝐸𝑖 and 

two extra feedforward terms 𝑈𝑓,𝑖−1  and 𝑈𝑓,𝑖−2  from the acceleration rates 𝑋̈𝑖−1  and 𝑋̈𝑖−2 , 

respectively. In the case of ACC, 𝑈𝑖 merely consists of a feedback control command. 𝑋𝑖 is the 

position output of vehicle 𝑖, 𝑋𝑝𝑟,𝑖 is the processed position output of vehicle 𝑖 after considering 

the spacing policy, 𝑋𝑖−1 is the feedback position information from the immediate predecessor 

while 𝑋𝑖−2  is the feedback position information from the second predecessor. 𝐾𝑖  is the 

feedback controller which generates a control command to rectify the spacing error. 𝐺𝑖 
represents the ideal longitudinal vehicle dynamics. 𝐻𝑖 denotes the spacing policy (i.e., such as 

CD or CTH), and 𝐹1,𝑖 and 𝐹2,𝑖 are feedforward filters to process the acceleration information 

from the corresponding predecessors. 𝛼𝑏,𝑖(𝜁𝑖)  and 𝛽𝑏,𝑖(𝜁𝑖)  are weighting coefficients for 

position feedback information while 𝛼𝑓,𝑖(𝜁𝑖)  and 𝛽𝑓,𝑖(𝜁𝑖)  are weighting coefficients for 

acceleration feedforward information. These coefficients are determined by the dynamic IFT; 

specific coefficient settings for each IFT scenario are shown in Table 2.1. 

 

Table 2.1. Weighting coefficient settings. 

 𝜁𝑖 𝛼𝑏,𝑖(𝜁𝑖) 𝛼𝑓,𝑖(𝜁𝑖) 𝛽𝑏,𝑖(𝜁𝑖) 𝛽𝑓,𝑖(𝜁𝑖) 

CACC1 1 𝛼 𝛼 𝛽 𝛽 

CACC2 2 1 1 0 0 

CACC3 3 1 0 0 1 

ACC 4 1 0 0 0 

 

The extra constraints for CACC1 are: 
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CACC1 has two predecessors with activated “send” functionality; thereby, the weighting 

coefficients of feedback and feedforward information are both greater than zero. The weighting 

coefficients α and β represent the relative importance of the information from the immediate 

and second predecessors, respectively. As CACC2 only has the immediate predecessor with 

activated “send” functionality, the weighting coefficient of the information from the second 

predecessor is zero. Similarly, the weighting coefficient of the information from the immediate 

predecessor in CACC3 is zero, and both weighting coefficients in ACC case are zero. 

 

2.4.1.1 Vehicle dynamics 

This study considers an idealized longitudinal vehicle dynamics model, ignoring air drag, 

rolling resistance and actuator delay (Li et al., 2015) in the model. This model is selected 

because the study focuses on upper-level control design (damping traffic oscillations), and 

assumes that the lower-level controller can address vehicle internal dynamics so that the 

vehicle can respond to acceleration commands without delays. Additionally, it is common to 

use such an idealized model for system-level platoon control design (Gong et al., 2016; Zhou 

et al., 2017). The linearized state-space representation of the idealized longitudinal vehicle 

dynamics can be represented as: 

𝑥̇𝑖(𝑡) = 𝑣𝑖(𝑡),    𝑣̇𝑖(𝑡) = 𝑢𝑖(𝑡) (2.19) 

where 𝑥𝑖(𝑡), 𝑣𝑖(𝑡), and 𝑢𝑖(𝑡) are the absolute position, velocity and acceleration of vehicle 𝑖 
at time 𝑡, respectively. 

To analyze stability performance, the modeling and analysis are performed in the Laplace 

domain. The idealized longitudinal vehicle dynamics model in the Laplace domain can be 

described by using a transfer function: 

𝐺𝑖(𝑠) = 𝑋𝑖(𝑠)𝑈𝑖(𝑠)
−1 = 𝑠−2 (2.20) 

where the input 𝑈𝑖(𝑠) denotes the acceleration of vehicle 𝑖 and the output 𝑋𝑖(𝑠) denotes the 

absolute position of vehicle 𝑖 in the Laplace domain. 

2.4.1.2 Spacing policy 

To achieve more efficient damping oscillations, we obtain the desired relative distances 

between vehicle 𝑖 and its two predecessors using the CTH policy as follows: 

𝑑𝑖,1(𝑡) = 𝐿 + ℎ𝑥̇𝑖(𝑡),      𝑑𝑖,2(𝑡) = 2[𝐿 + ℎ𝑥̇𝑖(𝑡)] (2.21) 

where 𝑑1,𝑖(𝑡) is the desired relative distance between vehicle 𝑖 and vehicle 𝑖 − 1, and 𝑑2,𝑖(𝑡) 

is the desired relative distance between vehicle 𝑖 and vehicle 𝑖 − 2. 𝐿 is the constant standstill 

distance (including vehicle length) between the two vehicles, 𝑥̇𝑖(𝑡) is the velocity of vehicle 𝑖, 
and ℎ is the desired time headway. 

The convex combination of spacing errors in Equation (2.22) is implemented in the feedback 

loop since the feedback controller processes spacing errors from both predecessors. 

𝑒𝑖(𝑡) = 𝛼𝑏,𝑖(𝜁𝑖){𝑥𝑖−1(𝑡) − 𝑥𝑝𝑟,𝑖,1(𝑡)} + 𝛽𝑏,𝑖(𝜁𝑖){𝑥𝑖−2(𝑡) − 𝑥𝑝𝑟,𝑖,2(𝑡)}

= 𝛼𝑏,𝑖(𝜁𝑖){[𝑥𝑖−1(𝑡) − 𝑥𝑖(𝑡)] − 𝑑𝑖,1(𝑡)}

+ 𝛽𝑏,𝑖(𝜁𝑖){[𝑥𝑖−2(𝑡) − 𝑥𝑖(𝑡)] − 𝑑𝑖,2(𝑡)} 

(2.22) 

𝛼 + 𝛽 = 1, 0 < 𝛼, 𝛽 < 1 (2.18) 
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From Table 2.1, we note that 𝛼𝑏,𝑖(𝜁𝑖) + 𝛽𝑏,𝑖(𝜁𝑖) = 1 is always satisfied in the four controller 

statuses. Substituting Equation (2.21) into Equation (2.22), the weighted spacing error is 

𝑒𝑖(𝑡) = 𝛼𝑏,𝑖(𝜁𝑖)𝑥𝑖−1(𝑡) + 𝛽𝑏,𝑖(𝜁𝑖)𝑥𝑖−2(𝑡) − 𝑥𝑖(𝑡) − (2 − 𝛼𝑏,𝑖(𝜁𝑖))(𝐿
+ ℎ𝑥̇𝑖(𝑡)) 

(2.23) 

Taking the Laplace transformation of Equation (2.23), the spacing error can be expressed 

equivalently as: 

𝐸𝑖(𝑠) = 𝛼𝑏,𝑖(𝜁𝑖)𝑋𝑖−1(𝑠) + 𝛽𝑏,𝑖(𝜁𝑖)𝑋𝑖−2(𝑠) − 𝐻𝑖(𝑠)𝑋𝑖(𝑠) (2.24) 

where 𝐻𝑖(𝑠) is the CTH spacing policy in frequency domain, given by: 

𝐻𝑖(𝑠) = 1 + (2 − 𝛼𝑏,𝑖(𝜁𝑖)) ℎ𝑠 
(2.25) 

2.4.1.3 Acceleration feedforward 

From Fig. 2.5, the relationship between tracking error 𝐸𝑖(𝑠) and the feedforward acceleration 

𝑋̈𝑖−1(𝑠) = 𝑠
2𝑋𝑖−1(𝑠)  of the predecessor 𝑖 − 1  and feedforward acceleration 𝑋̈𝑖−2(𝑠) =

𝑠2𝑋𝑖−2(𝑠) of the predecessor 𝑖 − 2 in the Laplace domain is formulated as:  

𝐸𝑖(𝑠) =
𝛼𝑏,𝑖(𝜁𝑖) − 𝛼𝑓,𝑖(𝜁𝑖)𝐻𝑖(𝑠)𝐺𝑖(𝑠)𝐹1,𝑖(𝑠)𝑠

2

1 + 𝐻𝑖(𝑠)𝐺𝑖(𝑠)𝐾𝑖(𝑠)
𝑋𝑖−1(𝑠)

+
𝛽𝑏,𝑖(𝜁𝑖) − 𝛽𝑓,𝑖(𝜁𝑖)𝐻𝑖(𝑠)𝐺𝑖(𝑠)𝐹2,𝑖(𝑠)𝑠

2

1 + 𝐻𝑖(𝑠)𝐺𝑖(𝑠)𝐾𝑖(𝑠)
𝑋𝑖−2(𝑠) 

(2.26) 

To eliminate spacing error between adjacent vehicles, feedforward filters 𝐹1,𝑖(𝑠) and 𝐹2,𝑖(𝑠) 
are designed based on a zero-error condition (Naus et al., 2010). Hence, the numerators of the 

first and second terms on the right hand side in Equation (2.26) should be zero. Doing so, and 

substituting the 𝛼𝑏,𝑖(𝜁𝑖), 𝛼𝑓,𝑖(𝜁𝑖), 𝛽𝑏,𝑖(𝜁𝑖) and 𝛽𝑓,𝑖(𝜁𝑖) from Table 1 and the spacing policy 

𝐻𝑖(𝑠) from Equation (2.25) into it, we can derive the feedforward filters as: 

𝐹1,𝑖(𝑠) = 𝐹2,𝑖(𝑠) = (𝐻𝑖(𝑠)𝐺𝑖(𝑠)𝑠
2)−1 = (𝐻𝑖(𝑠))

−1
 (2.27) 

 

2.4.1.4 Control command 

As illustrated in Fig. 2.5, our control command consists of a feedback term and two 

feedforward terms: 

𝑈𝑖(𝑠) = 𝑈𝑏,𝑖(𝑠) + 𝑈𝑓,𝑖−1(𝑠) + 𝑈𝑓,𝑖−2(𝑠) (2.28) 

Recall that the feedback term 𝑈𝑏,𝑖(𝑠) uses spacing error to stabilize the closed-loop system 

while the feedforward terms 𝑈𝑓,𝑖−1(𝑠)  and 𝑈𝑓,𝑖−2(𝑠)  use acceleration rates from the two 

predecessors to minimize the spacing error.  

The feedback term 𝑈𝑏,𝑖(𝑠) and the corresponding PD feedback controller are defined as: 

𝑈𝑏,𝑖(𝑠) = 𝐾𝑖(𝑠)𝐸𝑖(𝑠) (2.29) 

𝐾𝑖(𝑠) = 𝜔𝐾,𝑖(𝜔𝐾,𝑖 + 𝑠) (2.30) 

where 𝐸𝑖(𝑠) is the spacing error in the Laplace domain in Equation (2.24). 𝜔𝐾,𝑖 is the cut-off 

frequency of the PD controller. Cut-off frequency influences how aggressively vehicles 
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respond to rectify spacing errors; a larger cut-off frequency will make vehicle react faster. 

More importantly, 𝜔𝐾,𝑖 affects the value of string stability SS𝑋,𝑖(𝑗𝜔, 𝝃𝒅(𝝃)) in Equation (2.6), 

and will be determined analytically in Section 2.4.2. 

The feedforward terms 𝑈𝑓,𝑖−1(𝑠) and 𝑈𝑓,𝑖−2(𝑠) indicate that the acceleration rates of vehicles 

𝑖 − 1 and 𝑖 − 2 are sent to 𝑖, respectively: 

𝑈𝑓,𝑖−1(𝑠) = 𝛼𝑓,𝑖(𝜁𝑖)𝐹1,𝑖(𝑠)𝑠
2𝑋𝑖−1(𝑠) (2.31) 

𝑈𝑓,𝑖−2(𝑠) = 𝛽𝑓,𝑖(𝜁𝑖)𝐹2,𝑖(𝑠)𝑠
2𝑋𝑖−2(𝑠) (2.32) 

Note that according to the two-predecessor-following scheme, the second vehicle in the 

platoon can receive acceleration information from only the leading vehicle, that is, the 

feedforward term of vehicle 1 includes only 𝑈𝑓,0(𝑠). 

The overall control command is obtained by summing up Equations (2.29), (2.31) and (2.32). 

Through inverse Laplace transformation, the expression for the control command is:  

𝑢𝑖(𝑡) = 𝜔𝐾,𝑖
2 𝑒𝑖(𝑡) + 𝜔𝐾,𝑖𝑒̇𝑖(𝑡) + 𝛼𝑓,𝑖(𝜁𝑖)𝐹1,𝑖(𝑡)𝑥̈𝑖−1(𝑡)

+  𝛽𝑓,𝑖(𝜁𝑖)𝐹2,𝑖(𝑡)𝑥̈𝑖−2(𝑡) 

(2.33) 

The discretized version of (2.33) is used for operational deployment. We do not discuss it here 

due to space constraints. 

 

2.4.2 Stability analysis and parameter determination 

Two parameters in the system impact platoon performance: time headway ℎ  and cut-off 

frequency 𝜔𝐾,𝑖 . We analyze these parameters to mitigate measurement noise and reduce 

platoon oscillations to aid string stability.  

2.4.2.1 Measurement noise mitigation 

Measurement noise is a high-frequency noise generated from onboard sensors that produces 

inaccurate trajectory information, causing undesirable control inputs or platoon oscillations. 

Hence, mitigation of the measurement noise effect can improve control performance in terms 

of stability for individual vehicles in the platoon. Lemma 1 presents the characteristics of an 

upper bound for the product of ℎ  and 𝜔𝐾,𝑖   ( i. e. , ℎ𝜔𝐾,𝑖 ) to mitigate measurement noise. 

Additionally, for measurements with greater noise contamination, the settings of weighting 

coefficients in CACC1 can be adjusted to lower values to improve the noise mitigation effect. 

Lemma 1: By setting an upper bound for the product of ℎ and 𝜔𝐾,𝑖 as: ℎ𝜔𝐾,𝑖 ≤ 𝑊𝑚𝑎𝑥, the high-

frequency measurement noise from the two predecessors is individually attenuated by at least 

𝑊𝑚𝑎𝑥 [1 +𝑊𝑚𝑎𝑥]⁄ . 

Proof: For any following vehicle 𝑖 in the platoon, the source of the measurement noise is 

mainly from the movement state detection of the two predecessors 𝑖 − 1  and 𝑖 − 2 . The 

measured position 𝑋𝑖−1 (𝑋𝑖−2) of predecessor 𝑖 − 1 (𝑖 − 2) consists of true value of position 

𝑋̅𝑖−1 (𝑋̅𝑖−2) and measurement noise 𝑁𝑖−1 (𝑁𝑖−2): 𝑋𝑖−1 = 𝑋̅𝑖−1 + 𝑁𝑖−1 (𝑋𝑖−2 = 𝑋̅𝑖−2 +𝑁𝑖−2). 

From Fig. 2.5, the complementary sensitivity functions 𝑇1,𝑖 (𝑇2,𝑖) can be used to describe the 

relationship between the processed position output 𝑋𝑝𝑟,𝑖(𝑠)  of vehicle 𝑖  and measurement 

noise 𝑁𝑖−1 (𝑁𝑖−2) included in position of predecessor 𝑖 − 1 (𝑖 − 2). 
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𝑇1,𝑖(𝑠) = 𝑋𝑝𝑟,𝑖(𝑠)𝑁𝑖−1(𝑠)
−1

= 𝛼𝑏,𝑖(𝜁𝑖)𝐻𝑖(𝑠)𝐺𝑖(𝑠)𝐾𝑖(𝑠)[1

+ 𝐻𝑖(𝑠)𝐺𝑖(𝑠)𝐾𝑖(𝑠)]
−1 

(2.34) 

𝑇2,𝑖(𝑠) = 𝑋𝑝𝑟,𝑖(𝑠)𝑁𝑖−2(𝑠)
−1

= 𝛽𝑏,𝑖(𝜁𝑖)𝐻𝑖(𝑠)𝐺𝑖(𝑠)𝐾𝑖(𝑠)[1

+ 𝐻𝑖(𝑠)𝐺𝑖(𝑠)𝐾𝑖(𝑠)]
−1 

(2.35) 

The magnitude of complementary sensitivity function 𝑇1,𝑖 (𝑇2,𝑖)at a high-frequency represents 

the effect of measurement noise mitigation (a larger value of 𝑇1,𝑖  or 𝑇2,𝑖  indicates reduced 

mitigation of measurement noise). The key aspect of mitigating high-frequency measurement 

noise of 𝑋𝑖−1  (𝑋𝑖−2 ) is to decrease the value of 𝑇1,𝑖  (𝑇2,𝑖)  in the high-frequency band. 

Substituting 𝐺𝑖(𝑠), 𝐻𝑖(𝑠), and 𝐾𝑖(𝑠) from Equations (2.20), (2.25), and (2.30) into Equations 

(2.34)-(2.35), we have: 

lim
𝑠→∞

𝑇1,𝑖(𝑠)

= lim
𝑠→∞

𝛼𝑏,𝑖(𝜁𝑖)
ℎ𝜔𝐾,𝑖𝑠

2 + (ℎ𝜔𝐾,𝑖
2 +𝜔𝐾,𝑖)𝑠 + 𝜔𝐾,𝑖

2

(1 + ℎ𝜔𝐾,𝑖)𝑠2 + (ℎ𝜔𝐾,𝑖2 + 𝜔𝐾,𝑖)𝑠 + 𝜔𝐾,𝑖2

= 𝛼𝑏,𝑖(𝜁𝑖)
ℎ𝜔𝐾,𝑖

1 + ℎ𝜔𝐾,𝑖
 

(2.36) 

lim
𝑠→∞

𝑇2,𝑖(𝑠)

= lim
𝑠→∞

𝛽𝑏,𝑖(𝜁𝑖)
ℎ𝜔𝐾,𝑖𝑠

2 + (ℎ𝜔𝐾,𝑖
2 + 𝜔𝐾,𝑖)𝑠 + 𝜔𝐾,𝑖

2

(1 + ℎ𝜔𝐾,𝑖)𝑠2 + (ℎ𝜔𝐾,𝑖2 + 𝜔𝐾,𝑖)𝑠 + 𝜔𝐾,𝑖2

= 𝛽𝑏,𝑖(𝜁𝑖)
ℎ𝜔𝐾,𝑖

1 + ℎ𝜔𝐾,𝑖
 

(2.37) 

From Table 2.1, we have 𝛼𝑏,𝑖(𝜁𝑖) ≤ 1 and 𝛽𝑏,𝑖(𝜁𝑖) ≤ 1. By setting an upper bound for the 

product of ℎ𝜔𝐾,𝑖  as: ℎ𝜔𝐾,𝑖 ≤ 𝑊𝑚𝑎𝑥 , the upper bounds of lim
𝑠→∞

𝑇1,𝑖(𝑠) and lim
𝑠→∞

𝑇2,𝑖(𝑠) can be 

determined as lim
𝑠→∞

𝑇1,𝑖(𝑠) ≤ ℎ𝜔𝐾,𝑖 [1 + ℎ𝜔𝐾,𝑖]⁄ ≤ 𝑊𝑚𝑎𝑥 [1 +𝑊𝑚𝑎𝑥]⁄  and lim
𝑠→∞

𝑇2,𝑖(𝑠) ≤

ℎ𝜔𝐾,𝑖 [1 + ℎ𝜔𝐾,𝑖]⁄ ≤ 𝑊𝑚𝑎𝑥 [1 +𝑊𝑚𝑎𝑥]⁄ , respectively, which indicates that the high-

frequency measurement noise from two predecessors is individually attenuated by at least 

𝑊𝑚𝑎𝑥 [1 +𝑊𝑚𝑎𝑥]⁄ . This completes the proof for Lemma 1. 

For operational deployment, 𝑊𝑚𝑎𝑥 depends on the measurement noise mitigation needs of the 

specific system. Its value is determined through trial-and-error. In the study experiments, we 

aim to attenuate the measurement noise by a factor of at least 2/3. By calculating 

𝑊𝑚𝑎𝑥 [1 +𝑊𝑚𝑎𝑥]⁄ = 2/3, the upper bound of ℎ𝑑𝜔𝐾,𝑖 is set as 𝑊𝑚𝑎𝑥 = 2. 

Remark 1: In CACC1, the values of 𝛼𝑏,𝑖(𝜁𝑖) and 𝛽𝑏,𝑖(𝜁𝑖) can be adjusted based on the signal-

to-noise ratio (SNR)3 of position measurement 𝑋𝑖−1  and 𝑋𝑖−2 : 𝛼𝑏,𝑖(𝜁𝒊)/𝛽𝑏,𝑖(𝜁𝒊) = SNR2/
SNR1 , where SNR1 corresponds to measurement of 𝑋𝑖−1  and SNR2 corresponds to 

                                                           
3Signal-to-noise ratio (SNR) is defined as the ratio of the power of a signal divided by the power of measurement noise, 

which can also be expressed as the ratio between variance of measured signal and measurement noise: SNR =
𝑃𝑠𝑖𝑔𝑛𝑎𝑙 𝑃𝑛𝑜𝑖𝑠𝑒⁄ = 𝜎𝑠𝑖𝑔𝑛𝑎𝑙

2 𝜎𝑛𝑜𝑖𝑠𝑒
2⁄ ; a larger SNR indicates a weaker noise effect on the measurement information. 
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measurement of 𝑋𝑖−2. The adjustment of weighting coefficients can improve the effect of noise 

mitigation by putting lesser weight on measurements with smaller SNR. 

 

2.4.2.2 String stability analysis 

The string stability transfer function is specified as a measure of signal amplification. The 

platoon head-to-tail string stability is analyzed to ensure that traffic oscillations are effectively 

damped when they reach the platoon tail. A homogeneous string stability criterion is used as 

we assume a homogeneous vehicle platoon. The transfer function is the ratio of the trajectory 

oscillations in the Laplace domain of the 𝑖th vehicle to that of the leading vehicle: 

SS𝑋,𝑖(𝑠) = 𝑋𝑖(𝑠) 𝑋0(𝑠)⁄  (2.38) 

To ensure head-to-tail string stability, with 𝑠 = 𝑗𝜔, we have the string stability condition: 

‖SS𝑋,𝑖(𝑗𝜔)‖∞ =
‖𝑋𝑖(𝑗𝜔) 𝑋0(𝑗𝜔)⁄ ‖∞ ≤ 1 (2.39) 

where 𝑗 = √−1, and the string stability condition based on ∞-norm can be satisfied by the 

requirement of |SS𝑋,𝑖(𝑗𝜔)| ≤ 1 for all 𝜔. For simplification, in the following analysis, we use 

SS𝑋,𝑖 , 𝑋𝑖 , 𝐺𝑖 , 𝐻𝑖 , 𝐾𝑖 , 𝐹1,𝑖 , and 𝐹2,𝑖 to denote SS𝑋,𝑖(𝑠), 𝑋𝑖(𝑠), 𝐺𝑖(𝑠), 𝐻𝑖(𝑠), 𝐾𝑖(𝑠), 𝐹1,𝑖(𝑠), and 

𝐹2,𝑖(𝑠), respectively. 

From Equations (2.1), (2.20), and (2.25)-(2.32), the transfer functions of string stability of all 

vehicles in platoon are described as: 

SS̅̅ ̅ = 𝑇(𝜁)𝑆 (2.40) 

where SS̅̅ ̅ = [SSx,0 SSx,1 SSx,2 SSx,3  ⋯ SS𝑥,𝑛]
𝑇

, 𝑆 = [1 0 0 0 ⋯  0]𝑇 , SSx,0 = 1  and SSx,i =

𝑋𝑖 𝑋0⁄ , 𝑖 ≥ 1.  

𝑇(𝜁) =

[
 
 
 
 
 
1 0 0
ℊ1,1 −1 0

ℊ2,2 ℊ2,1 −1

   0   ⋯     0
   0   ⋱     ⋮
   0   ⋱     0

0 ℊ3,2  ℊ3,1
⋮ ⋱ ⋱
0 ⋯ ⋯

−1 ⋱  0
⋱ ⋱  0
ℊ𝑛,2 ℊ𝑛,1 −1]

 
 
 
 
 
−1

 

ℊ𝑖,1 = 𝛼𝑓,𝑖(𝜁𝑖)Λ𝑓,𝑖−1 + 𝛼𝑏,𝑖(𝜁𝑖)Λ𝑏,𝑖−1 (2.41) 

ℊ𝑖,2 = 𝛽𝑓,𝑖(𝜁𝑖)Λ𝑓,𝑖−2 + 𝛽𝑏,𝑖(𝜁𝑖)Λ𝑏,𝑖−2 (2.42) 

where Λ𝑓,𝑖−2 =
𝐺𝑖𝐹2,𝑖𝑠

2

1+𝐺𝑖𝐾𝑖𝐻𝑖
is the transfer function between the position of vehicles 𝑖 − 2 and 𝑖 

with respect to the feedforward term 𝑈𝑓,𝑖−2(𝑠) ; Λ𝑓,𝑖−1 =
𝐺𝑖𝐹1,𝑖𝑠

2

1+𝐺𝑖𝐾𝑖𝐻𝑖
 is the transfer function 

between vehicles 𝑖 − 1 and 𝑖 with respect to feedforward term 𝑈𝑓,𝑖−1(𝑠); Λ𝑏,𝑖−1 = Λ𝑏,𝑖−2 =
𝐺𝑖𝐾𝑖

1+𝐺𝑖𝐾𝑖𝐻𝑖
 is the transfer function between the position of vehicles 𝑖 − 1 or 𝑖 − 2 and 𝑖  with 

respect to the feedback term 𝑈𝑏,𝑖(𝑠). 

Based on the four communication statuses described in Fig. 2.4, we analyze the corresponding 

feasible regions for the time headway ℎ and cut-off frequency 𝜔𝐾,𝑖 to ensure string stability, 
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using Proposition 1 and Lemma 2. 

Proposition 1: If 𝜎 ≥ 0 , a first order transfer function: 𝑞(𝑗𝜔) =
1

1+𝑗𝜔𝜎
 satisfies the string 

stability in Equation (2.39). 

Proof: Since |𝑞(𝑗𝜔)| =
1

√1+𝜎2𝜔2
 and phase angle ∠𝑞(𝑗𝜔) = −arctan (𝜎𝜔), the magnitude of 

𝑞(𝑗𝜔) will always be lesser than or equal to one. However, when 𝜎 < 0, the phase angle of 

𝑞(𝑗𝜔) is positive, which indicates that the system corresponding to the first order transfer 

function is not practically deployable. Hence, 𝜎 ≥ 0 is essential and necessary to guarantee 

string stability. This completes the proof for Proposition 1. 

Lemma 2: The proposed adaptive PD controller in Section 2.4.1 can ensure the string stability 

of a platoon if the time headway ℎ and controller cut-off frequency 𝜔𝐾,𝑖 satisfy the following 

conditions:  

For the CACC cases, the time headway ℎ satisfies ℎ > 0. 

For the ACC case, a lower bound for ℎ𝜔𝐾,𝑖 satisfies ℎ𝜔𝐾,𝑖 ≥ √2. 

Proof: The string stability can be analyzed by performing an arithmetic operation on the 

transfer function of string stability, by checking if the ratio of trajectory oscillations in the 

frequency domain of the 𝑖th vehicle and the leading vehicle 0 is lesser than or equal to 1. 

The CACC cases: 

From Equations (2.40)-(2.42), the transfer functions of string stability for the CACC cases and 

the ACC case are: 

SS𝑋,𝑖 = (𝛼𝑓,𝑖(𝜁𝑖)Λ𝑓,𝑖−1 + 𝛼𝑏,𝑖(𝜁𝑖)Λ𝑏,𝑖−1)
𝑋𝑖−1
𝑋0

+ (𝛽𝑓,𝑖(𝜁𝑖)Λ𝑓,𝑖−2 + 𝛽𝑏,𝑖(𝜁𝑖)Λ𝑏,𝑖−2)
𝑋𝑖−2
𝑋0

 

(2.43) 

Note that to directly analyze string stability transfer function is complex as it is a high-order 

transfer function. To address this problem, we consider only the worst case in Equation (2.43) 

where the values of both  𝑋𝑖−2 𝑋0⁄  and 𝑋𝑖−1 𝑋0⁄  are equal to one (implying head-to-tail 

marginally string stability, which means the traffic oscillations is neither amplified nor damped 

when it propagates in the traffic flow). This enables the determination of a more conservative, 

feasible region of the two parameters to ensure string stability. From Table 2.1, when 

𝑋𝑖−2 𝑋0⁄ = 𝑋𝑖−1 𝑋0⁄ = 1, Equation (2.43) becomes: 

 

SS𝑋,𝑖 = {
(𝛼𝐺𝑖𝐾𝑖 + 𝛽𝐺𝑖𝐾𝑖 + 𝛼𝐺𝑖𝐹1,𝑖𝑠

2 + 𝛽𝐺𝑖𝐹2,𝑖𝑠
2)(1 + 𝐺𝑖𝐾𝑖𝐻𝑖)

−1, 𝐶𝐴𝐶𝐶1

(𝐺𝑖𝐾𝑖 + 𝐺𝑖𝐹1,𝑖𝑠
2)(1 + 𝐺𝑖𝐾𝑖𝐻𝑖)

−1,    𝐶𝐴𝐶𝐶2 𝑎𝑛𝑑 𝐶𝐴𝐶𝐶3
 

(2.44) 

 

Substituting for 𝐻𝑖 from Equation (2.27), Equation (2.44) can be simplified to: 

SS𝑋,𝑖 = {
[1 + (2 − 𝛼)ℎ𝑠]−1, 𝐶𝐴𝐶𝐶1

(1 + ℎ𝑠)−1,    𝐶𝐴𝐶𝐶2 𝑎𝑛𝑑 𝐶𝐴𝐶𝐶3
 (2.45) 

To guarantee the string stability condition in Equation (2.39), the magnitude of SS𝑋,𝑖 should 

not be greater than one. Correspondingly, for CACC1, according to proposition 1, the feasible 
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region is: ℎ > 0 since 1 ≤ 2 − 𝛼 < 2 and time headway is positive; for CACC2 and CACC3, 

similarly, the feasible region is: ℎ > 0.  

 

The ACC Case:  

Under the ACC schematic, we have 𝛼𝑓,𝑖(𝜁𝑖) = 𝛽𝑓,𝑖(𝜁𝑖) = 𝛽𝑏,𝑖(𝜁𝑖) = 0, and 𝛼𝑏,𝑖(𝜁𝑖) = 1 from 

Table 2.1. The transfer function of string stability from Equation (2.43) will degrade to: 

SS𝑋,𝑖 =
𝑋𝑖
𝑋0
= 𝛬𝑏,𝑖−1

𝑋𝑖−1
𝑋0

=
𝐺𝑖𝐾𝑖

1 + 𝐺𝑖𝐾𝑖𝐻𝑖

=
𝜔𝐾,𝑖𝑠 + 𝜔𝐾,𝑖

2

(1 + ℎ𝜔𝐾,𝑖)𝑠2 + 𝜔𝐾,𝑖(1 + ℎ𝜔𝐾,𝑖)𝑠 + 𝜔𝐾,𝑖2
 

(2.46) 

Consequently, by substituting 𝑠 = 𝑗𝜔  in Equation (2.49), the string stability condition 

becomes: 

|SS𝑋,𝑖| = |
𝑗𝜔𝐾,𝑖𝜔 + 𝜔𝐾,𝑖

2

(𝜔𝐾,𝑖 − (1 + ℎ𝜔𝐾,𝑖)𝜔2) + 𝑗𝜔𝐾,𝑖(1 + ℎ𝜔𝐾,𝑖)𝜔
| ≤ 1 (2.47) 

Solving inequality (4.50) leads to: 

𝜔𝐾,𝑖
2(2 − ℎ2𝜔𝐾,𝑖

2)(1 + ℎ𝜔𝐾,𝑖)
−2
≤ 𝜔2 (2.48) 

Since min
𝜔≥0

𝜔2 = 0, the inequality (2.48) can be solved by letting 𝜔2 = 0. Then, the string 

stability region of the controller cut-off frequency and headway time is: 

ℎ𝜔𝐾,𝑖 ≥ √2 (2.49) 

Remark 2: The decision-making process can be summarized as: (i) ℎ𝜔𝐾,𝑖 has a specific upper 

bound for mitigating measurement noise effects; ℎ𝜔𝐾,𝑖 ≤ 𝑊𝑚𝑎𝑥 = 2 ; (ii) string stability 

requires positive time headway: ℎ > 0  for the CACC1, CACC2 and CACC3 cases, and 

ℎ𝜔𝐾,𝑖 ≥ √2  for the ACC case; (iii) ensuring local stability (individual vehicle stability) 

requires positive time headway and controller cut-off frequency; and (iv) increasing either time 

headway or controller cut-off frequency will improve string stability performance though it 

deteriorates noise mitigation performance; hence, proper parameter selection is essential. 

Remark 3: The additional parameter settings are: (i) the desired time headways ℎ  in all 

controllers should be identical to preclude traffic oscillations that are generated through 

controller switching; and (ii) to simplify the problem, this study considers a homogeneous 

platoon, implying that all the vehicles have the same adaptive PD controller. 

 

2.5 Algorithm to solve OPT-II 

The section describes the algorithm to solve the IFT optimization model OPT-II, formulated in 

Section 2.4.2. The objective function in Equation (2.17) is complex because: (i) the decision 

variable 𝝃 is a binary vector, which makes it a discrete integer optimization problem; (ii) the 

transfer function SS𝑋,𝑖
2 (𝑗𝜔, 𝝃𝒅) depends on the controller used in the degeneration scenario 𝝃𝒅 , 

which implies different speed oscillation energies for the platoon under different degeneration 

scenarios; and (iii) the objective function requires the trajectory oscillations of the ambient traffic 



 

24 
 

conditions in the frequency domain 𝑋(𝑗𝜔)  in the integrand to determine the expected speed 

oscillation energies. Together, these factors make it difficult to obtain a closed-form solution, 

entailing the need for a numerical solution. 

To solve OPT-II numerically, the primary concern is computational complexity arising mainly due 

to platoon size. For a platoon with 𝑁 + 1 vehicles, there are 2𝑁+1 candidate IFTs. For an IFT with 

𝑏  vehicles that activate “send” functionalities, there are 2𝑏  degeneration scenarios. For each 

degeneration scenario, the computation of the control performance requires the sum of the speed 

oscillation energies in the frequency domain for each vehicle. Hence, the computational complexity 

can increase significantly as the platoon size increases, leading to the need for computation 

efficiency. Though the optimal IFT is not updated frequently, it should be determined as quickly 

as possible so that the platoon can adjust the IFT to the optimal one before ambient traffic conditions 

change significantly. To enhance computation efficiency, we first analyze the activation statuses of 

the “send” functionalities of the leading and the last vehicles in the platoon as a pre-processing step, 

which can preclude the consideration of a subset of candidate IFTs. Then, a two-step algorithm is 

proposed to efficiently search for the optimal IFT among the remaining candidate IFTs. 

2.5.1 Activation status of “send” functionalities of the leading and last vehicles in the 
platoon 

The “send” functionality of the communication device for the last (following) vehicle should 

always be deactivated as it only needs to receive information to maintain control performance. 

Deactivating the “send” functionality of this vehicle can decrease the probability of 

communication collision and improve the reliability of the V2V communication.  

Next, we investigate the activation status of the “send” functionality of the leading vehicle. We 

first compare the control performance of CACCs 1, 2, 3 and ACC using Proposition 2, and 

then prove that the leading vehicle always needs to activate its “send” functionality, using 

Lemma 3 and Theorem 1. 

From Equation (2.43), we note that the transfer function of string stability SS𝑋,𝑖 of vehicle 𝑖 is 

a function of its communication status 𝜁𝑖. In this subsection, we denote it more specifically as 

SS𝑋,𝑖,𝜁𝑖 to reflect the transfer function of string stability under different controllers (CACCs 1, 

2, 3, and ACC, for 𝜁𝑖 ∈ {1, 2, 3, 4}, respectively). 

Proposition 2: Based on the four possible communication statuses in Fig. 2.4, the magnitudes 

of transfer functions of string stability satisfy: |SS𝑋,𝑖,1| < |SS𝑋,𝑖,2| < |SS𝑋,𝑖,4| , |SS𝑋,𝑖,1| <

|SS𝑋,𝑖,3| < |SS𝑋,𝑖,4|, indicating that CACCs can damp traffic oscillations better than ACC. 

Proof: To compare the magnitudes of string stability transfer functions under the CACCs and 

the ACC, the cut-off frequency 𝜔𝑐,𝜁𝑖, 𝜁𝑖 ∈ {1, 2, 3, 4} is analyzed. The cut-off frequency 𝜔𝑐,𝜁𝑖 

is a corner frequency beyond which the logarithmic value of 𝑋𝑖/𝑋0 should be smaller than 

−3.01dB (Palm, 2005) , which indicates that the oscillation energy will be effectively damped. 

A smaller cut-off frequency 𝜔𝑐,𝜁𝑖  implies better string stability performance. The cut-off 

frequency 𝜔𝑐,𝜁𝑖 of transfer function SS𝑋,𝑖,𝜁𝑖(𝑗𝜔) can be calculated by solving Equation (2.50) 

as follows: 

20log|SS𝑋,𝑖,𝜁𝑖(𝑗𝜔𝑐,𝜁𝑖)| = −3.01dB (2.50) 

From Equations (2.44) and (2.45), the string stability transfer function for CACC1 is: 
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SS𝑋,𝑖,1(𝑗𝜔𝑐,1) = (𝛼 + 𝛽)(1 + 𝐺𝑖𝐾𝑖𝐻𝑖)[𝐻𝑖(1 + 𝐺𝑖𝐾𝑖𝐻𝑖)]
−1 = 𝐻𝑖

−1

= [1 + 𝑗(2 − 𝛼)ℎ𝜔𝑐,1]
−1

 

(2.51) 

By substituting Equation (2.51) into Equation (2.50) and solving it, we obtain the 

corresponding cut-off frequency in Equation (2.52), where 𝐶 = 10
−3.01

10 : 

𝜔𝑐,1 = √(1 − 𝐶)[(2 − 𝛼)2𝐶ℎ2]−1 (2.52) 

From Equations (2.44) and (2.45), the transfer functions for CACC2 and CACC3 are: 

SS𝑋,𝑖,2(𝑗𝜔𝑐,2) = SS𝑋,𝑖,3(𝑗𝜔𝑐,3) = (𝐺𝑖𝐾𝑖 + 𝐺𝑖𝐹1,𝑖𝑠
2)(1 + 𝐺𝑖𝐾𝑖𝐻𝑖)

−1

= 𝐻𝑖
−1 = (1 + 𝑗𝜔𝑐,2ℎ)

−1
 

(2.53) 

By substituting Equation (2.53) into Equation (2.50) and solving it, we obtain the 

corresponding cut-off frequency:  

𝜔𝑐,2 = 𝜔𝑐,3 = √(1 − 𝐶)[𝐶ℎ2]−1 (2.54) 

From Table 2.1, we have 0 < 𝛼 < 1. By comparing Equations (2.52) and (2.54), we obtain 

that 𝜔𝑐,1 < 𝜔𝑐,2 = 𝜔𝑐,3 . Then, we only need to compare 𝜔𝑐,2  or 𝜔𝑐,3  with 𝜔𝑐,4 . From 

Equation (2.46), the transfer function of ACC is: 

SS𝑋,𝑖,4(𝑗𝜔𝑐,4) =
𝐺𝑖𝐾𝑖

1 + 𝐺𝑖𝐾𝑖𝐻𝑖

=
𝑗𝜔𝐾,𝑖𝜔𝑐,4 +𝜔𝐾,𝑖

2

𝑗(𝜔𝐾,𝑖2 + ℎ𝜔𝐾,𝑖)𝜔𝑐,4 + 𝜔𝐾,𝑖2 − (1 + ℎ𝜔𝐾,𝑖)𝜔𝑐,42
 

(2.55) 

By substituting Equation (2.55) into Equation (2.50) and solving it, we obtain the 

corresponding cut-off frequency: 

𝜔𝑐,4 = √[𝐵 + √𝐵
2 − 4𝐶(1 + ℎ𝜔𝐾,𝑖)

2
(𝜔𝐾,𝑖

4(𝐶 − 1))] [2𝐶(1 + ℎ𝜔𝐾,𝑖)
2
]
−1

 (2.56) 

where 𝐵 = 𝐶(𝜔𝐾,𝑖 + ℎ𝜔𝐾,𝑖
2)
2
− 2𝐶𝜔𝐾,𝑖

2(1 + ℎ𝜔𝐾,𝑖) − 𝜔𝐾,𝑖
2. 

From Remark 2, the values of ℎ𝜔𝐾,𝑖 for controller design lie within the range [√2 ,2]. From 

Equations (2.54) and (2.56), the necessary condition for the inequality 𝜔𝑐,4 > 𝜔𝑐,2 is the lower 

bound of ℎ𝜔𝐾,𝑖: ℎ𝜔𝐾,𝑖 > (1 + √3)/2. As the range of the controller parameters is included 

within the lower bound that is necessary for 𝜔𝑐,4 > 𝜔𝑐,2, we can conclude that ACC and 

CACC2 satisfy the condition 𝜔𝑐,4 > 𝜔𝑐,2. 

Based on the analysis above, we note that the cut-off frequencies of string stability transfer 

functions under the CACC cases and the ACC case satisfy 𝜔𝑐,1 < 𝜔𝑐,2 = 𝜔𝑐,3 < 𝜔𝑐,4. Hence, 

the magnitudes of the string stability transfer functions satisfy:|SS𝑋,𝑖,1| < |SS𝑋,𝑖,2| < |SS𝑋,𝑖,4|, 

|SS𝑋,𝑖,1| < |SS𝑋,𝑖,3| < |SS𝑋,𝑖,4|.  
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Figure 2.6. Illustration of the deactivated or activated status of the “send” functionality of CAV 0. 

 

Next, the “send” status of the leading vehicle is analyzed. Two IFTs are illustrated in Figs. 

2.6(a) and (c). In both scenarios, the “send” functionality of the leading vehicle and the last 

vehicle are deactivated. In Fig. 2.6(a), vehicle 𝑁 − 1  has its communication device 

deactivated, while in Fig. 2.6(c) vehicle 𝑁 − 1  broadcasts messages. In Fig. 2.6(b) (Fig. 

2.6(d)), the “send” activation status of vehicle 𝑖 (for 𝑖 = 0,1,⋯ ,𝑁 − 1) is the same as for 

vehicle 𝑖 + 1 in Fig. 2.6(a) (Fig. 2.6(c)). The “send” functionality is deactivated for the last 

vehicles in Fig. 2.6(b) and Fig. 2.6(d). All feasible IFT candidates can be categorized into these 

four general cases. 

Lemma 3: In Fig. 2.6, the expected platoon speed oscillation energy of the IFT in Fig. 2.6(b) 

is always lower than that in Fig. 2.6(a). Similarly, the speed oscillation energy of the IFT in 

Fig. 2.6(d) is lower than that in Fig. 2.6(c). 

Proof: Denote the IFTs in Figs. 2.6(a) and 2.6(b) as 𝝃(𝑎) and 𝝃(𝑏), and degeneration scenarios 

of 𝝃(𝑎), 𝝃(𝑏) as 𝝃𝒅
(𝑎)

, 𝝃𝒅
(𝑏)

. For each 𝝃𝒅
(𝑎)

, there is a 𝝃𝒅
(𝑏)

 whose IFT from vehicle 0 to vehicle 

𝑁 − 1 is the same as the IFT of 𝝃𝒅
(𝑎)

 from vehicle 1 to vehicle 𝑁. Hence, the probability of 

𝝃𝒅
(𝑎)

, 𝑃𝑑(𝝃𝒅
(𝑎)
), is equal to the probability of 𝝃𝒅

(𝑏)
, 𝑃𝑑(𝝃𝒅

(𝑏)
) (i.e., 𝑃𝑑(𝝃𝒅

(𝑎)
) = 𝑃𝑑(𝝃𝒅

(𝑏)
)). Then, 

we only need to compare the control performance of 𝝃𝒅
(𝑎)

 and 𝝃𝒅
(𝑏)

. Note that vehicle 1 in Fig. 

2.6(a) and vehicle 𝑁  in Fig. 2.6(b) operate under ACC. To simplify notation, we 

use  SS𝑋,𝑖,𝜁𝑖(𝝃𝒅
(𝑎))  and 𝑋0  to denote SS𝑋,𝑖,𝜁𝑖(𝑗𝜔, 𝝃𝒅

(𝑎))  and 𝑋0(𝑗𝜔) , respectively. We denote 

𝑆𝑆𝑋,𝑖,𝜁𝑖
′ ( 𝝃𝒅

(𝑎)) = 𝑋𝑖 𝑋1⁄ ; then, according to Equations (2.11) and (2.38), we have: 

𝐸𝑑(𝝃𝒅
(𝑎)) = 4𝜋2∫ (∑SS𝑋,𝑖,𝜁𝑖

2 ( 𝝃𝒅
(𝑎))

𝑁

𝑖=0

)𝜔2𝑋0
2𝑑𝜔

+∞

0

= 4𝜋2∫ (1
+∞

0

+ SS𝑋,1,4
2 ∑SS′𝑋,𝑖,𝜁𝑖

2 ( 𝝃𝒅
(𝑎))

𝑁

𝑖=1

)𝜔2𝑋0
2𝑑𝜔 

(2.57) 
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𝐸𝑑(𝝃𝒅
(𝑏)) = 4𝜋2∑∫ 𝜔2𝑆𝑆𝑋,𝑖,𝜁𝑖

2 (𝝃𝒅
(𝑏))𝑋0

2𝑑𝜔
+∞

0

𝑁

𝑖=0

= 4𝜋2∫ (∑ 𝑆𝑆𝑋,𝑖,𝜁𝑖
2 (𝝃𝒅

(𝑏))

𝑁−1

𝑖=0

+∞

0

+ 𝑆𝑆𝑋,𝑛,4
2 (𝝃𝒅

(𝑏)))𝜔2𝑋0
2𝑑𝜔 

(2.58) 

𝐸𝑑(𝝃𝒅
(𝑏)) − 𝐸𝑑(𝝃𝒅

(𝑎))

4𝜋2

= ∫ (∑ 𝑆𝑆𝑋,𝑖,𝜁𝑖
2 (𝝃𝒅

(𝑏))

𝑁−1

𝑖=0

+ 𝑆𝑆𝑋,𝑛,4
2 (𝝃𝒅

(𝑏)) − 1
+∞

0

− SS𝑋,1,4
2 ∑SS′𝑋,𝑖,𝜁𝑖

2 ( 𝝃𝒅
(𝑎))

𝑁

𝑖=1

)𝜔2𝑋0
2𝑑𝜔 

(2.59) 

Since all vehicles have the same adaptive PD controller (Remark 2), we have 𝑆𝑆𝑋,1,4
2 = Λ𝑏,0

2 =

Λ𝑏,𝑖−1
2  for any 𝑖 = 2,… ,𝑁, where Λ𝑏,𝑖−1

2  is as shown in Equation (2.46). The receiver state 𝜁𝑖 

of vehicle 𝑖 (for 𝑖 = 1,2,⋯ ,𝑁) in Fig. 2.6(a) is equal to the receiver state 𝜁𝑖−1 of vehicle 𝑖 − 1 

in Fig. 2.6(b), which indicates that SS′𝑋,𝑖,𝜁𝑖
2

( 𝝃𝒅
(𝑎)) = SS𝑋,𝑖−1,𝜁𝑖−1

2 ( 𝝃𝒅
(𝑏)). From Proposition 2 

and Equations (2.38) and (2.46), for 𝑖 > 3 , we have  SS𝑋,𝑖−1,𝜁𝑖
2 ( 𝝃𝒅

(𝑏)
) ≤

SS𝑋,𝑖−2,𝜁𝑖−2
2 ( 𝝃𝒅

(𝑏))Λ𝑏,𝑖−2
2 ≤ SS𝑋,𝑖−3,𝜁𝑖−3

2 ( 𝝃𝒅
(𝑏))Λ𝑏,𝑖−2

2 Λ𝑏,𝑖−3
2 ≤ ⋯ <

SS𝑋,1,𝜁1
2 ( 𝝃𝒅

(𝑏))∏ Λ𝑏,𝑖′−1
2𝑖

𝑖′=2 < ∏ Λ𝑏,𝑖′−1
2𝑖

𝑖′=1 = Λ𝑏,0
2𝑖 .  For 𝑖 = 1,2, we have SS𝑋,𝑖−1,𝜁𝑖

2 ( 𝝃𝒅
(𝑏)) <

∏ Λ𝑏,𝑖′−1
2𝑖

𝑖′=1 = Λ𝑏,0
2𝑖 . These inequalities indicate that the string stability performance of vehicle 

𝑖  under degeneration scenario 𝝃𝒅
(𝑏)

 is always better than the performance when all its 

predecessors deactivate their “send” functionalities. Accordingly, we have: 

∑𝑆𝑆𝑋,𝑖,𝜁𝑖
2 (𝝃𝒅

(𝑏))

𝑁−1

𝑖=0

+ 𝑆𝑆𝑋,𝑛,4
2 (𝝃𝒅

(𝑏)) − 1 − SS𝑋,1,4
2 ∑SS′𝑋,𝑖,𝜁𝑖

2
( 𝝃𝒅

(𝑎))

𝑁

𝑖=1

  

< (1 − Λ𝑏,0
2 )(∑ Λ𝑏,0

2𝑖 )

𝑁−1

𝑖=1

+ Λ𝑏,0
2𝑁 − 1  

= (1 − Λ𝑏,0
2 )

1 − Λ𝑏,0
2𝑁

1 − Λ𝑏,0
2 + Λ𝑏,0

2𝑁 − 1 = 0  

(2.60) 

By substituting inequality (2.60) into Equation (2.59), we have 𝐸𝑑(𝝃𝒅
(𝑏)) < 𝐸𝑑(𝝃𝒅

(𝑎)), which 

indicates that each degeneration scenario 𝝃𝒅
(𝑏)

 of IFT 𝝃(𝑏) has lower oscillation energy than the 

corresponding degeneration scenario  𝝃𝒅
(𝑎)

 of IFT 𝝃(𝑎). Since the corresponding probabilities 
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of each degeneration scenario pair are identical, 𝝃(𝑏) always outperforms 𝝃(𝑎). Similarly, we 

can prove that the IFT in Fig. 2.6(d) outperforms that in Fig. 2.6(c). 

Theorem 1: In the optimal IFT, the “send” functionality of the leading vehicle is always 

activated. 

Proof: If the “send” functionality of leading vehicle is not activated, then from Lemma 3 we 

can always change the IFT from (a) to (b) or from (c) to (d) to find a better one until the leading 

vehicle activates the “send” functionality. 

 

2.5.2 Two- step algorithm for solving OPT-II 

Different IFTs may have several identical degeneration scenarios. For example, IFT 

[0, 0, 1, 0, 0] in Fig. 2.2(a) is a degeneration scenario of IFT [1, 0, 1, 0, 0] illustrated in Fig. 

2.2(a). However, it is also a degeneration scenario of IFT [1, 1, 1, 0, 0] when both vehicles 0 

and 1 fail to send messages at the same time. According to Theorem 1 in Section 2.5.1, the 

leading vehicle always needs to activate its “send” functionality and the last vehicle needs to 

deactivate it, a fully-activated IFT except for the last vehicle (𝝃 = [1,… , 1,0]) includes all 

possible degeneration scenarios for other IFTs. Therefore, we only need to investigate the 

string stability performance of the degeneration scenarios for that IFT. For the other IFTs, we 

will just use the string stability performance of the relevant degeneration scenarios calculated 

for the fully-activated IFT. 

Motivated by above observation, we propose a two-step algorithm. The first step calculates the 

string stability performance of degeneration scenarios for the fully-activated IFT to construct 

a control performance table according to Sections 3.1 and 4. Then, in the second step, for each 

𝝃 ∈ 𝛀, we traverse all possible degeneration scenarios 𝝃𝒅 ∈ 𝛀𝐝(𝝃), and add the corresponding 

control performances from the table generated in the first step with a weight 𝑃𝑑(𝝃𝒅(𝝃)) 
formulated from the contention model in Section 2.3.2 to obtain the expected string stability 

of IFT 𝝃. The pseudo code of the two-step algorithm is shown as the following steps: 

 

Step 1 

input ambient traffic oscillations in the frequency domain 𝑋(𝑗𝜔) , average density 𝑘̅ , and 

platoon size 𝑁 + 1;  

set 𝝃 = [1,… ,1,0] ∈ ℝ𝑁+1, update 𝛀𝒅(𝝃) 

for any 𝝃𝒅(𝝃) ∈ 𝛀𝒅(𝝃) 

Determine its speed oscillation energies 𝐸𝒅(𝝃𝒅(𝝃)) using Equation (2.11). 

end 

output 𝝃̂𝒅 = 𝝃𝒅(𝝃) and corresponding speed oscillation energies 𝐸̂𝒅(𝝃̂𝒅) = 𝐸𝒅(𝝃𝒅(𝝃)) for any 

𝝃𝒅(𝝃) ∈ 𝛀𝒅(𝝃) 

Step 2 

input E(x) 

set the set of candidate IFTs 𝛀 = {[1, 𝜂1, … , 𝜂𝑁−1, 0]|𝜂𝑖 ∈ {0, 1} for 𝑖 = 1,… ,𝑁 − 1} 

initialize the optimal expected speed oscillation energies 𝐸∗ ← +∞ 

for any 𝝃 ∈ 𝛀  
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Update 𝛀𝒅(𝝃) 

for any 𝝃𝒅(𝝃) ∈ 𝛀𝒅(𝝃) 

Determine the 𝑃𝑑(𝝃𝒅(𝝃)) using Equation (2.16). 

Find 𝝃̂𝒅 = 𝝃𝒅(𝝃), then 𝐸𝒅(𝝃𝒅(𝝃)) ← 𝐸̂𝒅(𝝃̂𝒅). 

end 

Determine the expected speed oscillation energies 𝐸(𝝃) under the IFT 𝝃 using Equation (2.2). 

if 𝐸(𝝃) < 𝐸∗ 

Update 𝐸∗ ← 𝐸(𝝃) and the optimal IFT 𝝃∗ ← 𝝃 

end 

end  

output 𝝃∗ 

 

2.6 Numerical experiments 

2.6.1 Experiment design and parameter setting 

Numerical experiments are conducted to analyze the CACC-OIFT strategy. First, the 

performance of V2V communication and the computational efficiency of the algorithm are 

investigated. Next, the performance of CACC-OIFT is analyzed. The optimization procedure 

and the performance comparison simulations are conducted on a C++ platform that integrates 

network simulator NS-3 to emulate the V2V communication process.  

The experiment setup consists of a 𝑁 + 1 CAV platoon with one leading vehicle (𝑖 = 0) and 

𝑁 following vehicles (𝑖 = 1,… ,𝑁, and 𝑁 = 11,… ,15). The movement of the leading vehicle 

is predetermined according to NGSIM field data (US DOT, 2007), which contains a 240-

second vehicle trajectory on eastbound I-80 in the San Francisco Bay area at Emeryville, 

California. The frequency domain trajectory oscillations 𝑋(𝑗𝜔)  and average density of 

ambient traffic flow 𝑘̅ are provided to the optimization model. The first following vehicle (𝑖 =
1) receives information only from one preceding vehicle (𝑖 = 0); so, the controller will switch 

between CACC2 and ACC if the IFT degenerates. For the other vehicles (𝑖 = 2,… ,𝑁), the 

controller can switch among the four controllers (i.e., CACC 1, 2, 3, and ACC). The desired 

time headways in all controllers are set to ℎ = 1𝑠. The cut-off frequency 𝜔𝐾,𝑖 is set as 0.8, 0.8, 

0.9 and 1.45 for CACC 1, 2, 3, and ACC, respectively. The parameters 𝛼 and 𝛽 are set as 0.7 

and 0.3. The control time interval is set as 0.1s. The network parameters are listed in Table 2.2. 

In addition, since the measurement noise generated from onboard sensors and vehicle 

movements cannot be neglected in CACC/ACC implementation, we include the measurement 

noise in the measured position and speed of predecessors. The position measurement noise and 

speed measurement noise are both Gaussian white noise. As illustrated in (Moon et.al., 2005), 

the standard deviation (SD) of the speed measurement noise is set as: 𝜎𝑣 = 0.1m/s; and 

according to (Kim, 2012), the SD of position measurement noise can be calculated as: 

 𝜎𝑥 =
𝑇𝜎𝑣

√2
 = 0.1 ×

0.1

√2
= 0.007m. 
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Table 2.2. Network parameters. 

Parameter Value Parameter Value Parameter Value 

Communication range 0.2 km Information generation rate 10 Hz Data rate 3 Mbps 

Packet size 500 B Contention window size 8 Slot time 16 μs 

 

The performance of CACC-OIFT is investigated through three numerical experiments. The 

first experiment compares the proposed CACC-OIFT with two other control strategies. The 

three strategies are: (i) CACC-OIFT, which includes the IFT optimization from Section 2.3 

and the adaptive PD controller from Section 2.4, (ii) CACC-DIFT, which includes the adaptive 

PD controller from Section 2.4 with a fully-activated IFT, and (iii) CACC with a fixed IFT 

(CACC-FIFT), which includes the CACC and ACC schemes developed in Naus et.al. (2010). 

We also analyze another CACC controller with a fixed IFT (Schakel et.al., 2010). However, 

as its string stability is not guaranteed, it performs worse than the CACC in Naus et.al. (2010). 

Hence, hereafter, we focus on the CACC-FIFT developed by Naus et.al. (2010) for comparison 

purposes. In the second experiment, we provide an optimal IFT updating scenario to study the 

transition process of switching optimal IFT when the platoon size changes. Additionally, as 

the controller cut-off frequency 𝜔𝐾,𝑖 has a significant impact on the performance of platoon 

control, the third experiment performs sensitivity analysis to illustrate the impact on system 

performance. The scenarios for control parameters 𝜔𝐾,𝑖 are labeled as scenarios 1 to 3 in Table 

2.3, in which we sequentially increase the value of 𝜔𝐾,𝑖  for the four controller sets 

simultaneously. 

 

Table 2.3. Values of 𝜔𝐾,𝑖 in the sensitivity analysis of controller cut-off frequency. 

Scenario 1 2 3 

CACC1 0.8 0.96 1.152 

CACC2 0.8 0.96 1.152 

CACC3 0.9 1.08 1.296 

ACC 1.45 1.74 2.088 

 

2.6.2 Performance of V2V communications, optimization result and computation efficiency 

To illustrate the performance of V2V communications under different ambient traffic 

conditions, we conduct simulations with different parameters. Fig. 2.7 shows the 

communication success rates under different ambient traffic conditions and different IFTs from 

the simulations in NS-3. In Fig. 2.7(a), the x-axis denotes the average traffic density 𝑘̅. This 

study sets the range of average density from 25 vehicles/km to 40 vehicles/km. The success 

rate decreases with the increase in the percentage of vehicles with activated “send’ 

functionalities of V2V communication devices in communication range. A higher percentage 

of activated “send” functionalities leads to more intense contentions for the chance to 

broadcast. For the same proportion of activated “send” functionalities in communication range, 
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a higher traffic density will result in a higher failure probability. This is because there are more 

vehicles in the communication range of each vehicle if the average density of ambient traffic 

flow is higher. Hence, there are more vehicles with activated “send” functionalities when the 

proportions are identical. Fig. 2.7(b) compares the simulation results under 𝑘̅ = 25 with the 

contention model (discussed in Section 2.3.2) that is calibrated for the IFT optimization model. 

The mean error is -0.25% and the standard deviation of the error is 0.0526. Similar results are 

observed under different average densities, implying that the model can accurately describe 

the success rate under different percentages of activated “send” functionalities. We do not 

show all results due to the page limit.     

 

  

(a) (b) 

Figure 2.7. Experiment results for V2V communications: (a) Communication success rates under 

different ambient traffic conditions; (b) Comparison of calibrated contention model and simulation 

results for k=20. 

 

Table 2.4 illustrates the optimal IFTs under different ambient traffic conditions and platoon 

sizes. It can be observed that the optimal IFTs are in accordance with Theorem 1 and Corollary 

1. Consecutive vehicles with activated “send’ functionalities can efficiently increase the 

occurrence of CACC cases, especially the CACC1 case which has much better control 

performance than the ACC case. However, the success rate of communication decreases since 

it increases the probability of information collision. Thereby, there are some consecutive 

vehicles with deactivated communication devices directly following those with activated ones, 

such as vehicles 3, 4, and 5 for the scenario with 𝑘̅=25 and N=14. For a given platoon size, the 

number of consecutive vehicles with deactivated “send’ functionalities is bigger if the density 

𝑘̅ is higher. For a given 𝑘̅, there exist several activated/deactivated patterns of communication 

devices in the platoon. For example, the same pattern 111000 exists for the first 6 and last 6 

vehicles in the scenario 𝑘̅=25, and N=14, as the communication environment and control 

scheme are similar for a pattern. 
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Table 2.4. Network parameters. 

   

N=14 

 

Optimal IFT 

  

𝑘̅=25 

 

Optimal IFT 

𝑘̅=25 111000111000110 N=11 111000111000 

𝑘̅=30 111000001110000 N=12 1110001111000 

𝑘̅=35 110000001110000 N=13 11100011110000 

𝑘̅=40 110000000110000 N=14 111000111000110 

  N=15 1110001110001100 

 

To enable practical deployment of CACC-OIFT, computational efficiency should be verified. 

Though we improve the algorithmic efficiency in several parts as discussed in Section 2.5, it 

is a brute-force method; the computational time increases with platoon size. However, this is 

not an issue in our study as the platoon length cannot be too long because: (1) long platoons 

will block other vehicles from changing lanes (Van Arem et al., 2006), and (2) regulatory 

policies can limit platoon length in the real world to ensure safe travel experience for all 

vehicles. In our experiments, the optimization procedure for a platoon with 15 vehicles only 

takes 48.23 seconds on a PC with Intel E3-1505M 2.80GHz 8Gb. Further, in practice, parallel 

computing can be leveraged. Then, the computational time for this platoon reduces to 3.22 

seconds. Since the optimal IFT is updated every time period (e.g., 5 minutes) or when ambient 

traffic oscillation conditions change significantly, this small computation time ensures the 

practical applicability of CACC-OIFT. 

 

2.6.3 Control performance evaluation 

The study evaluates the performance of the proposed CACC-OIFT through three numerical 

experiments, in which we compare the control performance to the other two controllers 

(CACC-FIFT and CACC-DIFT), investigate the transition process when the optimal IFT is 

updated, and illustrate the impact of cut-off frequency 𝜔𝐾,𝑖 on platoon control performance.  

Comparison between controllers  

Here, we first compare the performance of CACC-OIFT with those of CACC-DIFT and 

CACC-FIFT. The experiments analyze the three controllers in the context of unreliable V2V 

communications by simulating in NS-3. A 15-CAV platoon is analyzed in a traffic flow with 

average density 28.57 vehicle/km for 240s. The ambient traffic conditions do not change 

significantly. Under CACC-OIFT, the vehicle platoon will follow the IFT from the 

optimization model (111000111000110). Fig. 2.8 shows the spacing speed tracking error 

between adjacent vehicles in the platoon under these controllers, and Fig. 2.9 shows the 

standard deviations of the spacing and speed tracking errors, and vehicle speed. 

Fig. 2.8 illustrates that the spacing error of vehicles is mitigated based on their positions in the 

platoon. The figure shows that CACC-OIFT outperforms the other two controllers. For 

example, the maximum spacing error of the second following vehicle (i=2) under CACC-OIFT 

is 1.05m, compared with 1.42m for CACC-DIFT and 1.51m for CACC-FIFT. For the last 
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following vehicle (i=14), the maximum spacing errors are 0.37m, 0.68m and 0.79m for CACC-

OIFT, CACC-DIFT and CACC-FIFT, respectively. The standard deviations of spacing and 

speed tracking errors are compared for the three controllers in Fig. 2.9(a) and Fig. 2.9(b), 

respectively. Fig. 2.9(a) shows that the standard deviation of spacing error decreases 

sequentially across vehicles in the platoon for all controllers. However, CACC-OIFT performs 

better than the other two controllers as its spacing error reduces the quickest. Further, the 

profile of the spacing error standard deviation cycles from steep to flat. For example, the 

spacing error is reduced significantly for first 4 vehicles and then is almost constant for vehicles 

i=5 and i=6. This is because the IFT optimization deactivates the “send’ functionalities of V2V 

communication devices for several vehicles. Thus, some vehicles will operate under the ACC 

case, which does not leverage V2V connectivity. However, these deactivations lead to more 

reliable V2V communication connections for remaining links in CACC-OIFT and the 

consequent significant tracking error reduction for the vehicles. A similar trend is observed in 

Fig. 2.9(b) which shows the standard deviation of the speed tracking error. 

To further investigate the performance benefits under CACC-OIFT, the performance of the 

three CACC control strategies is compared when traffic oscillates (e.g., stop-and-go or slow-

and-fast traffic). The standard deviations of the vehicle speed are shown in Fig. 2.9(c). It 

illustrates that the fluctuation in standard deviation of speed decreases under all three schemes 

as the tail of the platoon is approached, which implies that traffic oscillations are damped. 

Further, CACC-OIFT reduces the speed fluctuations significantly as it proactively leverages 

the dynamic nature of the IFT. In summary, we conclude that the performance of a CAV 

platoon controlled by the proposed CACC-OIFT is better and more robust than that of the other 

two controllers in a realistic V2V communications environment. Also, based on the discussion 

in Section 2.1, CACC-DIFT performs better than CACC-FIFT as it considers IFT dynamics, 

albeit passively, unlike CACC-FIFT which assumes a fixed IFT. 

 

Transition process of optimal IFT  

Next, we analyze the transition process of switching optimal IFT. In this experiment, a 14-

CAV platoon is initially set up and controlled using CACC-OIFT with the optimal IFT from 

the optimization model (11100011110000). In the middle of the experiment (in time), a CAV 

approaches the tail of the platoon. At the 120th second, its headway becomes 1.5s, and this 

CAV joins the platoon (it terminates individual control mode and starts to apply the CACC-

OIFT of the platoon). Then, as the platoon size changes from 14 to 15, the optimal IFT is 

updated to 111000111000110. Fig. 2.10 shows the spacing error, the speed, and the 

acceleration for all CAVs. 
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Figure 2.8. Spacing error under different controllers: (a) CACC-OIFT; (b) CACC-DIFT; (c) CACC-

FIFT. 

 
Figure 2.9. Standard deviation of: (a) spacing error; (b) speed tracking error; (c) vehicle speed. 
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The results illustrate that the proposed CACC-OIFT is not affected by the transition of the 

optimal IFT. Specifically, in Fig. 2.10(a), the preceding 13 CAVs can still follow their leading 

vehicles with stable spacing errors after the last following CAV (i=14) joins in the platoon. 

The spacing error is also mitigated from the head to the tail of the platoon before and after the 

transition. The transition does not trigger any additional speed oscillations or acceleration 

oscillations for the platoon, as shown in Figs. 2.10(b) and 2.10(c). The last following CAV 

(i=14) decelerates appropriately to join the platoon with the desired headway (i.e., 1s). In this 

process, the maximum spacing error is 0.51m, and the maximum acceleration rate is -2.58m/s2. 

The reason for the maximum acceleration rate of the last following CAV (i=14) being greater 

than that of its immediate predecessor CAV (i=13) is because the relative speed is almost -

5m/s when the last CAV joins in the platoon. Thereby, it has to decelerate abruptly. After the 

join-in process (i.e., after 145s), the maximum acceleration rate of the last following CAV 

(i=14) becomes smaller than that of its immediate predecessor, and the string stability 

performance is maintained. This indicates that the transition of optimal IFT induced by a 

change in platoon size through the addition of another CAV does not impact the performance 

of CACC-OIFT.  

 

 
Figure 2.10. Performance of the platoon in IFT transition period:  

(a) spacing error; (b) speed; (c) acceleration. 
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Sensitivity analysis of cut-off frequency 

The sensitivity analysis of the cut-off frequency 𝜔𝐾,𝑖 is conducted by comparing the spacing 

errors and vehicle acceleration in Scenarios 1, 2 and 3, as shown in Figs. 2.11 and 12, 

respectively. Fig. 2.11 illustrates that spacing error will decrease as the value of 𝜔𝐾,𝑖 increases. 

For example, the maximum spacing error of the last following vehicle in Scenarios 1, 2 and 3 

are 0.37m, 0.32m, and 0.24m, respectively. However, Fig. 2.12 shows that with the increase 

of 𝜔𝐾,𝑖 , the effect of high-frequency measurement noise will increase in the acceleration 

profile as it reaches the tail of the platoon (such as the parts marked by red circles in Fig. 2.12 

(b)), which is undesirable from the perspective of passengers’ comfort and vehicle operation. 

Insights into the above observations can be generated by characteristics related to string 

stability performance and measurement noise mitigation. From the standpoint of string stability 

performance, the string stability transfer functions in Equations (2.45) and (2.47) imply that 

increasing the controller cut-off frequency 𝜔𝐾,𝑖  will decrease the value of string stability 

transfer function, improving the damping effect of traffic oscillations. However, for the noise 

mitigation effect, the complementary sensitivity functions in Equations (2.36) and (2.37) 

indicate that as the value of 𝜔𝐾,𝑖  becomes larger, the noise mitigation factor will increase, 

degrading the noise mitigation performance. Hence, increasing controller cut-off frequency 

will jeopardize the control performance related to noise mitigation. Hence, to enable an 

acceptable level of platoon control performance, a careful selection of the controller cut-off 

frequency 𝜔𝐾,𝑖 is essential for real-world application.  

 
Figure 2.11. Spacing error profile of: (a) Scenario 1; (b) Scenario 2; (c) Scenario 3. 
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Figure 2.12. Acceleration profile of: (a) Scenario 1; (b) Scenario 2; (c) Scenario 3. 
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3. SMOOTH SWITCHING CONTROL BASED CACC CONSIDERING DYNAMIC INFORMATION FLOW 
TOPOLOGY 

3.1 Introduction 

Connected and autonomous vehicle (CAV) related technologies provide enormous opportunities 

for innovation which can improve traffic safety, efficiency, and environmental sustainability 

(Horowitz and Varaiya, 2000), such as Adaptive Cruise Control (ACC), and Cooperative Adaptive 

Cruise Control (CACC) (Xiao et al., 2018). By leveraging vehicle-to-vehicle (V2V) 

communications in the platoon control process, the CACC controls individual CAV car-following 

behaviors by utilizing both onboard sensors and information exchanged between neighboring 

vehicles to improve traffic efficiency and safety. Since CAVs can receive more information than 

non-connected autonomous vehicles through V2V communications, CACC can coordinate CAV 

movements more flexibly and intelligently to achieve better platooning and system-level control 

performance, such as improved highway capacity (Horowitz and Varaiya, 2000), more effective 

energy saving (McAuliffe et al., 2018), and enhanced string stability performance (i.e., attenuation 

of shockwave propagation) (Naus et al., 2010). 

However, V2V communication failures are inevitable, especially in high-density CAV (Kim et al., 

2017; Wang et al., 2017) environments, as the substantial ongoing communication links will 

significantly contribute to the source of communication failures, such as information congestion, 

latency, and package loss. Correspondingly, communication failures will dynamically vary the 

information flow topology (IFT). Since IFT is a critical component of CACC (Li et al., 2015), the 

inherent variability in IFT leads to negative effects on CACC when it is designed using a fixed IFT. 

To deal with IFT dynamics and uncertainties in controller design, Gao et al. (Gao et al., 2018) 

proposed a distributed adaptive sliding mode controller to counteract the uncertainties in the 

information flow matrix. Remarkably, the switching control is an effective approach as well. Gong 

et al. (2019) proposed the CACC-DIFT method in which fixed-gain controllers can switch 

adaptively according to dynamic IFT so that string stability and noise mitigation are guaranteed. 

By leveraging the characteristics of dynamic IFT and switching control scheme, Wang et al. (2019) 

developed a two-step optimization algorithm to dynamically obtain an optimal IFT that deactivates 

the “send” functionalities of some CAVs in the platoon, which optimally trades off the probability 

of communication failure and string stability performance. 

However, the switching control strategy may lead to bumpy control inputs due to the potential 

differences in the transient responses of different controller sets (Cheong and Safonov, 2008). In 

the case of CACC, bumpy control inputs lead to choppy vehicle acceleration profile (i.e., vehicle 

will jerk at the switching instance), which is uncomfortable for passengers and hazardous for 

vehicle powertrain. Hence, a smoothing technique for switching control is essential for CACC in a 

dynamic IFT environment. The solution of smooth transition is to suppress the sources of bumpy 

transition: (i) different transient responses between controller sets at switching instances, and (ii) 

contaminated vehicle states caused by the existence of sensor measurement noise and acceleration 
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disturbances in platoon control operation (Zhou et al., 2017). 

 

Figure 3.1. Conceptual flowchart of the CACC-SOIFT 

 

To alleviate the problem of different transient responses, there are three underlying approaches: (i) 

reducing the frequency of controller switching, (ii) reducing the difference between controller 

transient responses, and (iii) suppress the measurement noise and acceleration disturbances during 

CACC/ACC operations. Correspondingly, trade-offs exist for the first two approaches. To reduce 

the frequency of controller switching, the first trade-off exists between the probability of 

communication failure and the control performance (i.e., string stability and smooth acceleration). 

The most robust IFT (i.e., deactivating all V2V communications) has the worst idealized control 

performance (i.e., the control performance without communication failures), while the IFT with all 

V2V communications functionalities activated has the best idealized control performance but leads 

to high probability of communication failure and the highest controller switching frequency. The 

second trade-off is between the tracking performance and riding comfort (jerk minimization) 

performance. Specifically, in order to achieve desired tracking performance, vehicles need to be 

responsive or sensitive to the speed and acceleration changes of preceding vehicles, which can 

induce abrupt changes in control input (i.e., acceleration command), and thereby jeopardize riding 

comfort. 

Motivated by the aforementioned two trade-offs and the two sources of bumpy transition, we 

propose a smooth switching control based CACC scheme with IFT optimization, denoted as CACC 

based on smooth-switching optimal IFT (CACC-SOIFT) framework, with three smoothing 

strategies: IFT optimization, controller parameter optimization, and Kalman predictor. By 

deactivating the “send” functionality of some CAVs, the first-layer IFT optimization model seeks 

optimal trade-offs between communication reliability and control performance (i.e., damping 

oscillations and ensuring comfort) to generate an optimal robust IFT, such that controller switching 

can be minimized. The second-layer controller parameter optimization adjusts controller gains at 
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each time step 𝑘 to minimize the difference between control inputs while maintaining string-stable 

tracking, so as to trade-off tracking performance and riding comfort. Both layers interact iteratively 

with each other to achieve the desired platoon control performance. As illustrated in Fig. 3.1, given 

the ambient traffic conditions and platoon size of the time period 𝜏 (i.e., time span from 𝑡𝜏 to 𝑡𝜏+1), 

the first layer optimizes the IFT and then delivers the optimal IFT to the second layer. As the model 

used in the first-layer optimization is associated with controller parameters, at time instance 𝑡𝜏, the 

second layer provides the average values of optimal controller parameters from the previous time 

period 𝜏 (i.e., time span from 𝑡𝜏−1 to 𝑡𝜏) to the first layer, such that the IFT can be updated based 

on the optimal parameter setting that corresponds to platoon operations under different ambient 

traffic conditions. Note that the time interval 𝜏 is not a fixed value for real-time operations, and the 

optimal IFT needs to be updated when ambient traffic conditions or platoon length change. Also, 

in real-world operations, the platoon leader gathers information on ambient traffic conditions and 

platoon length from the roadside unit to perform the first-layer IFT optimization, and then 

distributes the optimal IFT to all of the following vehicles. Each following vehicle performs the 

second-layer controller parameter optimization in a distributed manner and delivers the optimal 

controller parameters back to the platoon leader. 

Additionally, to suppress measurement noise generated from onboard sensors and the acceleration 

disturbances of the vehicle, a Kalman filter is applied to estimate actual states from the 

contaminated ones. The estimated states will be utilized in the controller to guarantee smooth 

response. Additionally, since CACC can achieve better control performance (i.e., string stability 

and faster converging rate) compared to ACC (Gong et al., 2019; Ploeg et al., 2015), the Kalman 

predictor is formulated using the Kalman filter to estimate vehicle acceleration as communication 

failures occur, so that CACC can be reconstructed from ACC in some scenarios to improve the 

control performance and smoothness of acceleration. 

The remainder of the paper is organized as follows. The next section briefly introduces the 

formulation of IFT degeneration and controller structure. The first-layer IFT optimization is 

presented in the section thereafter. Then, the second-layer controller parameter optimization is 

formulated. The section thereafter articulates the methods to address measurement noise and 

estimation of vehicle states. Then, the proposed CACC-SOIFT is validated using numerical 

experiments. Finally, concluding comments and future directions are discussed.  

3.2 Formulation of platoon control 

This study assumes a homogeneous CAV platoon. Through V2V communications, each CAV has 

the “send” functionality to broadcast information to other vehicles, and can receive information 

based on the benchmark IFT. The benchmark IFT here is the two-predecessor following topology, 

where each CAV (e.g. vehicle 𝑖 in Fig. 3.2(a)) can receive information on kinematic states (i.e., 

absolute position, speed, and acceleration) from the two closest preceding vehicles (vehicles 𝑖 − 1 

and 𝑖 − 2 in Fig. 3.2(a)). Due to communication failures, the benchmark IFT (i.e., CACC1 in Fig. 

3.2(a)) may degenerate to the three potential scenarios shown in Figures 3.2(b)-3.2(d). Note that 

Fig. 3.2 is drawn based on the perspective of ego CAV 𝑖. 
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3.2.1 IFT degeneration and receiver status 

     Figure 3.2 presents the receiver status and controller sets. 

                            

CAV i-2 CAV i-1 CAV i
 

CAV i-2 CAV i-1 CAV i
 

(a) CACC1 (b) CACC2 

 

CAV i-2 CAV i-1 CAV i
 

CAV i-2 CAV i-1 CAV i
 

(c) CACC3 (d) ACC 

 

Figure 3.2. Receiver status and controller sets 

 

Since the IFT optimization involves activation and deactivation of “send” functionality, to 

describe the IFT in a CAV platoon, we introduce a sender status vector 𝝃 . 𝝃 =
[𝜂0, 𝜂1, … , 𝜂𝑁], 𝜂𝑖 ∈ {0, 1} for 𝑖 = 0,1, … ,𝑁 to indicate the expected IFT of a platoon with 𝑁 +
1  vehicles. 𝜂𝑖  indicates send status of vehicle 𝑖 : 𝜂𝑖 = 0  means deactivated “send” 

functionality, 𝜂𝑖 = 1  implies activated “send” functionality. Then, we define 𝝃𝒅(𝝃) as the 

possible degeneration scenarios of expected IFT 𝝃.  

As illustrated in section 3.2 of (Wang et al., 2019), the receiver status (i.e., the controller that 

the vehicle will apply) of each vehicle in the platoon is dependent on the degeneration of the 

expected benchmark IFT. Correspondingly, the receiver status vector 𝜁(𝝃𝒅(𝝃))  can be 

formulated using 𝝃𝒅(𝝃): 

𝜁(𝝃𝒅(𝝃)) =

[
 
 
 
 
𝜁0(𝝃𝒅(𝝃))

𝜁1(𝝃𝒅(𝝃))

⋮
𝜁𝑁(𝝃𝒅(𝝃))]

 
 
 
 
𝑇

= [

4
4
⋮
4

]

𝑇

− 𝝃𝒅(𝝃)

[
 
 
 
 
 
0 2
⋮ 0

1 0
2 ⋱

⋯ 0
⋱ ⋮

⋮ ⋱
⋮ ⋱

⋱ ⋱
⋱ ⋱

⋱ 0
2 1

⋮ ⋱
0 ⋯

⋱ ⋱
⋯ ⋯

0 2
⋯ 0]

 
 
 
 
 

 
(3.

1) 

in which 𝜁𝑖(𝝃𝒅(𝝃)) is the corresponding receiver status of vehicle 𝑖  in a platoon with IFT 

degeneration scenario 𝝃𝒅, 𝜁𝑖 ∈ {1, 2, 3, 4} for 𝑖 = 0,1, … ,𝑁. Additionally, as illustrated in Fig. 

3.2, the receiver status 𝜁𝒊(𝝃𝒅(𝝃)) = 1,2,3,4  indicates that vehicle 𝑖  is controlled under 

CACC1, CACC2, CACC3, or ACC strategy, respectively. 
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3.2.2 Controller structure 

The controller design is inspired by our previous work (Gong et al., 2019). The control 

schematic of vehicle 𝑖 in the platoon is depicted in Fig. 3.3. 𝑋𝑖 and 𝑈𝑖 are the absolute position 

and control inputs of vehicle 𝑖, respectively. 𝑈𝑓,𝑖−1 (𝑈𝑓,𝑖−2) is the feedforward input generated 

from the acceleration 𝑋̈𝑖−1 (𝑋̈𝑖−2) of vehicle 𝑖 − 1 (𝑖 − 2). 𝑈𝑏,𝑖 is the feedback input generated 

from tracking error 𝐸𝑖 . 𝑋𝑑,𝑖  represents the (desired) virtual arrival position of vehicle 𝑖 . 
𝛼𝑏,𝑖(𝜉𝑖), 𝛼𝑓,𝑖(𝜉𝑖), 𝛽𝑏,𝑖(𝜉𝑖), 𝛽𝑓,𝑖(𝜉𝑖), 𝐺𝑖, 𝐻𝑖, 𝐾𝑖, and  𝐹𝑙,𝑖 (𝑙 ∈ {1,2}) are discussed below.  

 

 
Figure 3.3. Block diagram of control schematic 

 

Indicator values. The indicator values corresponding to receiver status will be applied to switch 

controllers for different IFTs, as described in Table 3.1. 

 

Table 3.1. Indicator values for controller sets 

Controller 𝜻𝒊 𝜶𝒃,𝒊(𝜻𝒊) 𝜶𝒇,𝒊(𝜻𝒊) 𝜷𝒃,𝒊(𝜻𝒊) 𝜷𝒇,𝒊(𝜻𝒊) 

CACC1 1 𝛼 𝛼 𝛽 𝛽 

CACC2 2 1 1 0 0 

CACC3 3 0 0 1 1 

ACC 4 1 0 0 0 

 

The weighting factors 𝛼 and 𝛽 are subject to following constraints: 𝛼 + 𝛽 = 1, 0 ≤ 𝛼, 𝛽 ≤ 1. 

Vehicle dynamics. With the assumption that a fundamental controller is used to address 

nonlinearities in vehicle operation, the longitudinal vehicle dynamics can be approximated 

using a third-order model (Zheng et al., 2018): 

The vehicle time constant 𝜏𝑖 ∈ (0,1) represents the inertial delay of vehicle powertrain. 𝜏𝑖 is 

identical for all CAVs in a homogeneous platoon. 

Note that 𝑠 is the Laplace operator for control design in Laplace domain. In addition, 𝑠 = 𝑗𝜔 

𝐺𝑖(𝑠) =
𝑋𝑖(𝑠)

𝑈𝑖(𝑠)
=

1

𝑠2(𝜏𝑖𝑠 + 1)
 (3.2) 
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will be further used for analysis of string stability performance in frequency domain. 𝜔 is the 

angular frequency, and 𝑗 is the indicator of complex number. By using 𝑠 as a differentiator, 

and 
1

𝑠
 as an integrator, each transfer function in Laplace domain can be converted to specific 

ordinary differential equation in time domain. 

Spacing policy. The constant time headway (CTH) is applied by factoring string stability and 

safety (Naus et al., 2010): 

in which ℎ𝑑 is the desired time headway between vehicles. 

Feedback controller. To rectify the spacing error and speed tracking error, a PD feedback 

controller is devised: 

where 𝑘𝑝,𝑖  and 𝑘𝑑,𝑖  are the controller proportional gain and derivative gain for vehicle 𝑖 , 

respectively. 

Feedforward filter. Feedforward filters are applied to process the acceleration of preceding 

vehicles to guarantee string stability performance. The formulation is expressed as: 

where 𝑘𝑓,𝑙  is feedforward gain for the 𝑙 th (𝑙 ∈ {1,2}) preceding vehicle. The numerator is 

designed for canceling the inertial delay in vehicle dynamics to enhance string stability 

performance. 

Control input. As illustrated in Fig. 3.3, the control input of vehicle 𝑖  consists of two 

feedforward terms 𝑈𝑓,𝑖−𝑙(𝑠), 𝑖 ∈ {1,2}, and a feedback term 𝑈𝑏,𝑖(𝑠): 

where the spacing error can be expressed as: 

 

3.2.3 Stability analysis 

In this section, we analytically set up some conditions for controller parameters to guarantee 

local stability and string stability, such that vehicle movements are stable and traffic 

oscillations can be attenuated in the platoon. 

Local stability. The local stability is associated with the movement of each individual vehicle 

in the platoon. If a vehicle is locally stable in the platoon, it will converge to the equilibrium 

position and equilibrium speed asymptotically as time progresses. To ensure local stability, the 

poles (the roots of the denominator) of the closed-loop sensitivity transfer function need to be 

in the left half complex plane (LHP) (Gong et al., 2019). 

𝐻𝑖(𝑠) = 1 + (2 − 𝛼𝑏,𝑖(𝜁𝑖)) ℎ𝑑𝑠 (3.3) 

𝐾𝑖(𝑠) = 𝑘𝑝,𝑖 + 𝑘𝑑,𝑖𝑠 (3.4) 

𝐹𝑙,𝑖(𝑠) = 𝑘𝑓,𝑙
1 + 𝜏𝑖𝑠

𝐻𝑖(𝑠)
, 𝑙 ∈ {1,2} (3.5) 

𝑈𝑖(𝑠) = 𝑈𝑏,𝑖(𝑠) + 𝑈𝑓,𝑖−1(𝑠) + 𝑈𝑓,𝑖−2(𝑠)

= 𝑘𝑝,𝑖𝐸(𝑠) + 𝑘𝑑,𝑖𝐸̇(𝑠) + 𝛼𝑓,𝑖(𝜁𝑖)𝐹1,𝑖(𝑠)𝑋̈𝑖−1(𝑠)

+ 𝛽𝑓,𝑖(𝜁𝑖)𝐹2,𝑖(𝑠)𝑋̈𝑖−2(𝑠) 

(3.6) 

𝐸𝑖(𝑠) = 𝛼𝑏,𝑖(𝜁𝑖)𝑋𝑖−1(𝑠) + 𝛽𝑏,𝑖(𝜁𝑖)𝑋𝑖−2(𝑠) − 𝐻𝑖(𝑠)𝑋𝑖(𝑠) (3.7) 
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The sensitivity transfer function 𝑇𝑖(𝑠) is used to describe the relationship of the virtual arrival 

position of vehicle 𝑖 with the positions of preceding vehicles: 

where 

Substituting in 𝐺𝑖, 𝐻𝑖, and 𝐾𝑖, 𝑇𝑖(𝑠) can be expressed as: 

We then apply the Routh-Hurwitz stability criterion to analyze the positions of the roots of the 

denominator. The specific steps of the Routh-Hurwitz test are as follows: 

First, we rearrange the coefficients of the denominator of 𝑇𝑖(𝑠) in (3.10) in the Routh-Hurwitz 

array: 

𝑠3 𝜏𝑖 𝑘𝑑,𝑖
+ 𝑘𝑝,𝑖ℎ𝑑 

0 

(3.11) 
𝑠2 1 + 𝑘𝑑,𝑖ℎ𝑑 𝑘𝑝,𝑖 0 

𝑠1 (𝑘𝑑,𝑖 + 𝑘𝑝,𝑖ℎ𝑑)(1 + 𝑘𝑑,𝑖ℎ𝑑) − 𝜏𝑖𝑘𝑝,𝑖

(1 + 𝑘𝑑,𝑖ℎ𝑑)
 

0 0 

𝑠0 𝑘𝑝,𝑖 0 0 

Then, according to the Routh-Hurwitz theorem, to guarantee that the roots of the characteristic 

equation are located in the LHP, we need to constrain all entries in the second column of (3.11) 

to be positive. Thereby, the condition for local stability can be expressed as: 

String stability. The string stability can be interpreted as a stable property of signal 

propagation. In the case of string-stable platoon control, the fluctuations of vehicle speed, or 

the disturbances of vehicle movement will not be amplified upstream of the platoon, indicating 

that traffic oscillations can be damped effectively. 

In this study, we apply the head-to-tail string stability transfer function (SSTF) 

SS𝑋,𝑖(𝑠, 𝜁𝑖(𝝃𝒅(𝝃))) to measure the propagation of traffic oscillations. The SSTF is defined as 

the ratio of the trajectory oscillations of vehicle 𝑖 and leading vehicle 0: 

𝑋𝑑,𝑖(𝑠) = 𝛼𝑏,𝑖(𝜁𝑖)𝑇𝑖(𝑠)𝑋𝑖−1(𝑠) + 𝛽𝑏,𝑖(𝜁𝑖)𝑇𝑖(𝑠)𝑋𝑖−2(𝑠) (3.8) 

𝑇𝑖(𝑠) =
𝑋𝑑,𝑖(𝑠)

𝑋𝑖−1(𝑠)
=
𝑋𝑑,𝑖(𝑠)

𝑋𝑖−2(𝑠)
=

𝐻𝑖(𝑠)𝐺𝑖(𝑠)𝐾𝑖(𝑠)

1 + 𝐻𝑖(𝑠)𝐺𝑖(𝑠)𝐾𝑖(𝑠)
 (3.9) 

𝑇𝑖(𝑠) =
𝑘𝑑,𝑖𝑠

2 + (𝑘𝑑,𝑖 + 𝑘𝑝,𝑖ℎ𝑑)𝑠 + 𝑘𝑝,𝑖

𝜏𝑖𝑠3 + (1 + 𝑘𝑑,𝑖ℎ𝑑)𝑠2 + (𝑘𝑑,𝑖 + 𝑘𝑝,𝑖ℎ𝑑)𝑠 + 𝑘𝑝,𝑖
 (3.10) 

𝑘𝑝,𝑖 > 0 (3.12) 

𝑘𝑑,𝑖 > −
1

ℎ𝑑
 (3.13) 

(𝑘𝑑,𝑖 + 𝑘𝑝,𝑖ℎ𝑑)(1 + 𝑘𝑑,𝑖ℎ𝑑) > 𝜏𝑖𝑘𝑝,𝑖 (3.14) 
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where Λ𝑓,𝑖−𝑙(𝑠) =
𝐺𝑖𝐹𝑙,𝑖𝑠

2

1+𝐺𝑖𝐾𝑖𝐻𝑖
, 𝑙 ∈ {1,2}, Λ𝑏,𝑖−1(𝑠) =  Λ𝑏,𝑖−2(𝑠) =

𝐺𝑖𝐾𝑖

1+𝐺𝑖𝐾𝑖𝐻𝑖
. 

Substituting 𝑠 = 𝑗𝜔, the following condition is essential to ensure string stability: 

As the SSTF is a complex high-order transfer function, we use the worst case in control design 

for Equation (3.15), where  𝑋𝑖−2 𝑋0⁄  and 𝑋𝑖−1 𝑋0⁄  are both set as equal to one, implying a 

marginal string stability (i.e., the traffic oscillation is neither amplified nor attenuated upstream 

of the platoon). Thereby, we can obtain a more conservative and safer condition for string 

stability. Substituting 𝐺𝑖, 𝐻𝑖, 𝐾𝑖, and 𝐹𝑙,𝑖 into Equation (3.15), the simplified expression for 

SSTF is obtained as: 

The string stability is achieved via satisfying Equation (3.16). Applying similar arithmetic 

operations in (Gong et al., 2019), the string stability conditions can be derived as follows. 

For CACC cases, string stability requires: 

which can be satisfied using following condition (8): 

Thus, Equation (3.19) is equivalent to: 

SS𝑋,𝑖(𝑠, 𝜁𝑖(𝝃𝒅(𝝃))) =
𝑋𝑖(𝑠)

𝑋0(𝑠)

= (𝛼𝑓,𝑖(𝜁𝑖)Λ𝑓,𝑖−1(𝑠) + 𝛼𝑏,𝑖(𝜁𝑖)Λ𝑏,𝑖−1(𝑠))
𝑋𝑖−1(𝑠)

𝑋0(𝑠)

+ (𝛽𝑓,𝑖(𝜁𝑖)Λ𝑓,𝑖−2(𝑠) + 𝛽𝑏,𝑖(𝜁𝑖)Λ𝑏,𝑖−2(𝑠))
𝑋𝑖−2(𝑠)

𝑋0(𝑠)
 

(3.15) 

‖SS𝑋,𝑖(𝑗𝜔)‖∞ = ‖
𝑋𝑖(𝑗𝜔)

𝑋0(𝑗𝜔)
‖
∞

≤ 1 (3.16) 

SS𝑋,𝑖(𝑠, 𝜁𝑖(𝝃𝒅(𝝃)))

=

{
 
 

 
 

𝑘𝑓,𝑙

1 + (2 − 𝛼𝑏,𝑖(𝜁𝑖)) ℎ𝑑𝑠
, 𝜁𝑖 ∈ {1,2,3}

𝑘𝑑,𝑖𝑠 + 𝑘𝑝,𝑖

𝜏𝑖𝑠3 + (1 + 𝑘𝑑,𝑖ℎ𝑑)𝑠2 + (𝑘𝑑,𝑖 + 𝑘𝑝,𝑖ℎ𝑑)𝑠 + 𝑘𝑝,𝑖
, 𝜁𝑖 = 4

 
(3.17) 

‖SS𝑋,𝑖(𝑠, 𝜁𝑖(𝝃𝒅(𝝃)))‖∞ = ‖
𝑘𝑓,𝑙

1 + (2 − 𝛼𝑏,𝑖(𝜁𝑖)) ℎ𝑑𝑠
‖

∞

≤ 1 (3.18) 

|SS𝑋,𝑖(𝑗𝜔, 𝜁𝑖(𝝃𝒅(𝝃)))| = |
𝑘𝑓,𝑙

1 + 𝑗 (2 − 𝛼𝑏,𝑖(𝜁𝑖)) ℎ𝑑𝜔
| ≤ 1 (3.19) 

|SS𝑋,𝑖(𝑗𝜔, 𝜁𝑖(𝝃𝒅(𝝃)))| =
|𝑘𝑓,𝑙|

√1 + ((2 − 𝛼𝑏,𝑖(𝜁𝑖)) ℎ𝑑𝜔)
2

≤ 1 
(3.20) 
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The inequality in (3.16) can then be valid by restricting ℎ𝑑 > 0,0 < 𝑘𝑓,𝑙 ≤ 1, 𝑙 ∈ {1,2}, which 

solidifies the string stability requirement in ACC cases. 

For ACC case, utilizing the same procedures in CACC cases, string stability can be guaranteed 

via: 

By moving the denominator to the right-hand side, Equation (3.21) can be transformed to: 

Then we expand the square terms and reorganize the inequality (3.22) as: 

To ensure inequality (3.23) is valid, we require following inequality to make the polynomial 

of 𝜔 on the left-hand side having no real roots: 

The inequality (3.24) can be transformed into: 

from which we can obtain the condition of controller parameters to ensure string stability in 

ACC case: 

3.3 IFT optimization 

3.3.1 Probability of IFT degeneration 

From (Qiu et al., 2012), 𝑃𝑑(𝝃𝒅(𝝃)) is formulated as a contention model with saturated and 

unsaturated communication traffic using the Markov chain: 

|SS𝑋,𝑖(𝑗𝜔, 𝜁𝑖(𝝃𝒅(𝝃)))|

=

√𝑘𝑝,𝑖
2 + (𝑘𝑑,𝑖𝜔)

2

√(𝑘𝑝,𝑖 − (1 + 𝑘𝑑,𝑖ℎ𝑑)𝜔2)
2
+ ((𝑘𝑑,𝑖 + 𝑘𝑝,𝑖ℎ𝑑)𝜔 − 𝜏𝑖𝜔3)

2
≤ 1 

(3.21) 

𝑘𝑝,𝑖
2 + (𝑘𝑑,𝑖𝜔)

2

≤ (𝑘𝑝,𝑖 − (1 + 𝑘𝑑,𝑖ℎ𝑑)𝜔
2)
2

+ ((𝑘𝑑,𝑖 + 𝑘𝑝,𝑖ℎ𝑑)𝜔 − 𝜏𝑖𝜔
3)
2

 

(3.22) 

𝜏𝑖
2𝜔4 + [(1 + 𝑘𝑑,𝑖ℎ𝑑)

2
− 2𝜏𝑖(𝑘𝑑,𝑖 + 𝑘𝑝,𝑖ℎ𝑑)]𝜔

2 − 2𝑘𝑝,𝑖 + 𝑘𝑝,𝑖
2 ℎ𝑑

2

≥ 0 
(3.23) 

[(1 + 𝑘𝑑,𝑖ℎ𝑑)
2
− 2𝜏𝑖(𝑘𝑑,𝑖 + 𝑘𝑝,𝑖ℎ𝑑)]

2

− 4𝜏𝑖
2(−2𝑘𝑝,𝑖 + 𝑘𝑝,𝑖

2 ℎ𝑑
2) < 0 (3.24) 

(1 + 𝑘𝑑,𝑖ℎ𝑑)
2
[(1 + 𝑘𝑑,𝑖ℎ𝑑)

2
− 4𝜏𝑖(𝑘𝑑,𝑖 + 𝑘𝑝,𝑖ℎ𝑑)] + 4𝜏𝑖

2(𝑘𝑑,𝑖
2

+ 2𝑘𝑑,𝑖𝑘𝑝,𝑖ℎ𝑑 + 2𝑘𝑝,𝑖) < 0 
(3.25) 

4𝜏𝑖(𝑘𝑑,𝑖 + 𝑘𝑝,𝑖ℎ𝑑)

>
4𝜏𝑖

2(𝑘𝑑,𝑖
2 + 2𝑘𝑑,𝑖𝑘𝑝,𝑖ℎ𝑑 + 2𝑘𝑝,𝑖)

(1 + 𝑘𝑑,𝑖ℎ𝑑)
2 + (1 + 𝑘𝑑,𝑖ℎ𝑑)

2
 

(3.26) 

𝑃𝑑(𝝃𝒅(𝝃)) =  ∏ 𝑝𝑖,unsat
𝑖∈𝑨𝒅(𝝃)

∏ (1− 𝑝𝑖,unsat)
𝑖∈𝑩𝒅(𝝃)

 (3.27) 
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where 𝑨𝒅(𝝃𝒅(𝝃)) and 𝑩𝒅(𝝃𝒅(𝝃)) are the indices of vehicles with successful and unsuccessful 

send status, respectively. Specifically, 𝑨𝒅(𝝃𝒅(𝝃)) = {𝑖|𝜂𝑖 = 1, 𝜂𝑖,𝑑 = 1, 𝑖 = 0,… ,𝑁}  and 

𝑩𝒅(𝝃𝒅(𝝃)) = {𝑖|𝜂𝑖 = 1, 𝜂𝑖,𝑑 = 0, 𝑖 = 0, … , 𝑁}, where 𝜂𝑖,𝑑 is the sender status of vehicle 𝑖 after 

IFT degeneration.  

𝑝𝑖,unsat  is the communication success rate of a sender vehicle 𝑖  under unsaturated 

communication condition: 

where CW  is the contention window size, and 𝑘1, 𝑘2, 𝑘3  are fitting coefficients obtained 

through linear regression in NS-3 numerical simulation (Wang et al., 2019). 𝜌̅𝑖(𝝃) is the 

average number of vehicles with activated send functionalities within the communication range 

𝑅 of vehicle 𝑖. With the average density 𝑘̅ of the ambient traffic flow, the average number of 

vehicles within communication range 𝑅 can be calculated as 𝑚 = 𝑅𝑘̅. Then, the vector 𝜌̅(𝝃) =
[𝜌̅0(𝝃), 𝜌̅1(𝝃),… , 𝜌̅𝑁(𝝃)] is expressed as: 

where 𝑴 (𝑘̅)  is a NxN 2𝑚 + 1  diagonal matrix whose non-zero entries are 1 if 𝑚 < 𝑁 . 

Otherwise, M is a NxN matrix whose entries are all equal to 1. 

𝑝𝑖,𝑠𝑎𝑡(𝝃) is the success rate of a sender vehicle 𝑖 in saturated communication condition: 

where 𝑏𝑖 is the busy rate of sender vehicle 𝑖: 

From Equations (3.30) and (3.31), 𝑝𝑖,sat can be solved using the numerical method proposed 

in (Qiu et al., 2012). 

 

3.3.2 Performance metric 

To factor both string stability and comfort, the control performance metric 𝐸𝒅(𝝃𝒅(𝝃))  is 

extended to evaluate both traffic oscillations and smooth acceleration. As traffic oscillations 

can be measured by the fluctuations of vehicle speed (Li et al., 2012), and comfort is closely 

related to the jerk magnitude, the performance metric 𝐸𝒅(𝝃𝒅(𝝃))  is formulated as the 

summation of the vehicle speed energy 𝐸𝑉,𝑖 and jerk energy 𝐸𝐽,𝑖 throughout the platoon: 

Correspondingly, the speed energy and jerk energy can be obtained by integrating the power 

spectral density (PSD) of vehicle speed 𝑉𝑖
2(𝑗𝜔) and the PSD of jerk 𝐽𝑖

2(𝑗𝜔) over the whole 

span of frequency 𝜔 in the frequency domain, respectively: 

𝑝𝑖,unsat(𝝃) = [𝑘1 log(𝜌̅𝑖(𝝃)) + 𝑘2CW + 𝑘3]𝑝𝑖,𝑠𝑎𝑡(𝝃) (3.28) 

𝜌̅(𝝃) = 𝝃𝑴 (𝑘̅) (3.29) 

𝑝𝑖,sat =  2(1 − 𝑏𝑖)(1 − 2𝑏𝑖 + CW)
−1 (3.30) 

𝑏𝑖 = 1 − 𝑒
−𝜌̅𝑖(𝝃)𝑝𝑖,sat (3.31) 

𝐸𝑑(𝝃𝒅(𝝃)) =∑ (𝐸𝑉,𝑖 + 𝐸𝐽,𝑖
𝑁

𝑖=0
) (3.32) 

𝐸𝑉,𝑖 = ∫ 𝑉𝑖
2(𝑗𝜔)𝑑𝜔

+∞

0

 (3.33) 
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As the information on ambient traffic conditions is usually obtained as vehicle trajectory data 

through vehicle-to-infrastructure communications under real-time implementation, an 

approach is needed to extract the speed energy and jerk energy from the vehicle trajectory data. 

First, the influence of ambient traffic oscillations is introduced into the platoon through the 

leading vehicle. Next, each vehicle in the platoon is connected to its predecessors, and the 

performance index of each vehicle in the platoon can be recursively traced back to that of the 

leading vehicle using SSTF (3.15) defined in Stability Analysis section. Then, we can use the 

frequency response of the leading vehicle’s trajectory 𝑋0(𝑗𝜔), and the SSTF of each vehicle 

in the platoon to derive the performance index (i.e., speed fluctuation and jerk energy) for the 

whole platoon. The specific procedures are described hereafter in detail. 

First, by performing the inverse Fourier transform for the trajectory frequency response 𝑋𝑖(𝑗𝜔) 
of vehicle 𝑖, the vehicle trajectory information can be derived in the time domain: 

where 𝑋0(𝑗𝜔)  represents the trajectory oscillations of the leading vehicle 𝑖 = 0 , and 

SS𝑋,𝑖(𝑗𝜔, 𝝃𝒅(𝝃)) is the SSTF describing the propagation of a traffic oscillation from the leading 

vehicle, as defined in the Stability Analysis section. 

Second, the derivative of vehicle trajectory is used to obtain speed information in the time 

domain: 

The vehicle speed can be obtained from its frequency response 𝑉𝑖(𝑗𝜔) using the inverse 

Fourier transform: 

Then, since equations (3.36) and (3.37) are equivalent, we can extract 𝑉𝑖(𝑗𝜔) out as follows: 

Similarly, the third-order derivative of vehicle trajectory can be used to obtain the jerk in the 

time domain: 

Then, we compare it to the equivalency obtained from inverse Fourier transform to obtain 

𝐽𝑖(𝑗𝜔): 

𝐸𝐽,𝑖 = ∫ 𝐽𝑖
2(𝑗𝜔)𝑑𝜔

+∞

0

 (3.34) 

𝑥𝑖(𝑡) =  ∫ 𝑋𝑖(𝑗𝜔)𝑒
2𝜋𝑡𝑗𝜔𝑑𝜔

+∞

0

= ∫ SS𝑋,𝑖(𝑗𝜔, 𝝃𝒅(𝝃))𝑋0(𝑗𝜔)𝑒
2𝜋𝑡𝑗𝜔𝑑𝜔

+∞

0

 

(3.35) 

𝑣𝑖(𝑡) =  𝑥̇𝑖(𝑡) =  ∫ 2𝜋𝑗𝜔SS𝑋,𝑖(𝑗𝜔, 𝝃𝒅(𝝃))𝑋0(𝑗𝜔)𝑒
2𝜋𝑡𝑗𝜔𝑑𝜔

+∞

0

 (3.36) 

𝑣𝑖(𝑡) =  ∫ 𝑉𝑖(𝑗𝜔)𝑒
2𝜋𝑡𝑗𝜔𝑑𝜔

+∞

0

 (3.37) 

𝑉𝑖(𝑗𝜔) = 2𝜋𝑗𝜔SS𝑋,𝑖(𝑗𝜔, 𝝃𝒅(𝝃))𝑋0(𝑗𝜔) (3.38) 

𝐽𝑖(𝑡) =  𝑥𝑖
(3)(𝑡) =  −∫ 8𝜋3𝑗𝜔3SS𝑋,𝑖(𝑗𝜔, 𝝃𝒅(𝝃))𝑋0(𝑗𝜔)𝑒

2𝜋𝑡𝑗𝜔𝑑𝜔
+∞

0

 (3.39) 
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Using equations (3.32), (3.33), (3.34), (3.38) and (3.40), the platoon control performance 

metric 𝐸𝒅(𝝃𝒅(𝝃)) is expressed as: 

Remark 1: The first-layer optimization is solved using the two-step algorithm in (Wang et al., 

2019). The period of updating optimal IFT depends on the oscillations in ambient traffic and 

platoon length. Once the PSD of leading vehicle trajectory changes appreciably (i.e., changes 

of oscillation magnitude and oscillation frequency), or some vehicles leave or join in the 

platoon, the first-layer IFT optimization will be performed and generate a new optimal IFT. 

Moreover, as mentioned in (Li et al. ,2010), the invariant-pattern of traffic oscillations usually 

persists around 10 minutes, indicating a 10-minute interval could be a potential selection in 

real world implementation. 

 

3.4 Controller parameter optimization 

Though the first-layer IFT optimization improves the robustness of V2V communications to reduce 

the frequency of controller switching, IFT dynamics are inevitable in real-time traffic. Thus, the 

switching control based CACC shown in Fig. 3.3, which can adaptively switch controllers 

according to the IFT dynamics, is necessary for acceptable control performance (Gong et al., 2019). 

To achieve smooth acceleration profile for riding comfort as well as string stability, a linear 

quadratic method is implemented in the second-layer optimization to update controller feedback 

gains 𝑘𝑝,𝑖(𝑘), 𝑘𝑑,𝑖(𝑘), and feedforward gains 𝑘𝑓,1(𝑘), 𝑘𝑓,2(𝑘) for vehicle 𝑖 at each time step 𝑘, 

such that vehicle acceleration can be throttled in a comfortable range while maintaining string-

stable tracking (i.e., the spacing error and speed tracking error can be minimized upstream the 

platoon). To perform controller switching and realize real-time implementation, the control inputs 

and vehicle dynamics are discretized using zero-order hold method as described in (Gong et al., 

2019). Correspondingly, the optimization model for controller parameters is formulated as: 

𝐽𝑖(𝑗𝜔) = −8𝜋
3𝑗𝜔3SS𝑋,𝑖(𝑗𝜔, 𝝃𝒅(𝝃))𝑋0(𝑗𝜔) (3.40) 

𝐸𝑑(𝝃𝒅(𝝃)) =∑ ∫ (𝑉𝑖
2(𝑗𝜔) + 𝐽𝑖

2(𝑗𝜔))𝑑𝜔
+∞

0

𝑁

𝑖=0

=∑ ∫ (4𝜋2𝜔2
+∞

0

𝑁

𝑖=0

+ 64𝜋6𝜔6)SS𝑋,𝑖
2 (𝑗𝜔, 𝝃𝒅(𝝃))𝑋0

2(𝑗𝜔)𝑑𝜔 

(3.41) 

min
𝑘𝑝,𝑖,𝑘𝑑,𝑖,𝑘𝑓,1,𝑘𝑓,2

OBJ(𝑘) =Φ𝑖,1(𝑘)
𝑇𝛼(𝑘)𝑃Φ𝑖,1(𝑘) + Φ𝑖,2(𝑘)

𝑇𝛽(𝑘)𝑃Φ𝑖,2(𝑘)

+ 𝑄(𝑎𝑖(𝑘 + 1) − 𝑎𝑖(𝑘))
2
 

(3.42) 

       s.t.                   𝑋̅𝑖(𝑘 + 1) = 𝐴𝑖𝑋̅𝑖(𝑘) + 𝐵𝑖𝑢𝑖(𝑘) (3.43) 

          𝑢𝑖(𝑘) = 𝛼(𝑘)Κ(𝑘)
𝑇Φi,1(𝑘) + 𝛽(𝑘)Κ(𝑘)

𝑇Φi,2(𝑘) + 𝛼(𝑘) 𝑢𝑓,𝑖−1(𝑘) +

𝛽(𝑘)𝑢𝑓,𝑖−2(𝑘) 
(3.44) 

𝑘𝑝,𝑚𝑖𝑛 ≤ 𝑘𝑝,𝑖(𝑘) ≤ 𝑘𝑝,𝑚𝑎𝑥 (3.45) 
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where Φ𝑖,𝑙(𝑘) = Ξ𝑖−𝑙(𝑘 + 1) − Ξ𝑖(𝑘 + 1) − 𝑙ℎ𝑑Ξ̇𝑖(𝑘 + 1) , 𝑙 ∈ {1,2} , Ξ𝑖(𝑘) = [𝑥𝑖(𝑘), 𝑣𝑖(𝑘)]
𝑇 , 

Ξ̇𝑖(𝑘) = [𝑣𝑖(𝑘), 𝑎𝑖(𝑘)]
𝑇  is used to formulate spacing error and speed tracking error between 

vehicle 𝑖 and its 𝑙th predecessor.  𝑋̅𝑖(𝑘) = [𝑥𝑖(𝑘), 𝑣𝑖(𝑘), 𝑎𝑖(𝑘)]
𝑇 is the state vector of vehicle 𝑖 at 

time step 𝑘, 𝐴𝑖 = [

1 𝑑𝑡 0.5𝑑𝑡2

0 1 𝑑𝑡

0 0
𝜏𝑖

𝜏𝑖+𝑑𝑡

], and 𝐵𝑖 = [

0
0
𝑑𝑡

𝜏𝑖+𝑑𝑡

] are the state matrices of discrete vehicle 

dynamics , 𝑃 = [
𝑃11 0
0 𝑃22

] is the diagonal weighting matrix for spacing error and speed tracking 

error, and 𝑄  denotes the weighting coefficients for jerk, 𝛼(𝑘)  and 𝛽(𝑘)  are indicator values 

defined in the section of Controller Structure. Increasing 𝑃11 (𝑃22) implies more penalty on spacing 

error (speed tracking error), while increasing 𝑄 indicates more emphasis on riding comfort (i.e., 

jerk minimization). 𝑑𝑡 is the sampling period. Κ(𝑘) = [𝑘𝑝,𝑖(𝑘), 𝑘𝑑,𝑖(𝑘)]
𝑇
 is the vector of controller 

gains. 𝑢𝑓,𝑖−𝑙(𝑘), 𝑙 ∈ {1,2} is the discretized feedforward input: 

The last term of the objective function (3.42) is associated with jerk minimization, while the first 

two terms are related to the spacing error and speed tracking error with respect to two predecessors, 

respectively. Constraint (3.43) is the discrete vehicle dynamics model describing changes in the 

vehicle states. Constraint (3.44) is the control command for CAVs in the platoon. Constraints (3.45) 

to (3.48) are the upper and lower bounds of controller feedforward and feedback gains for achieving 

desirable local stsability, string stability performance. 

Remark 2: The second-layer optimization is formulated in a standard Quadratic Programming (QP) 

form, which can be solved efficiently using existed QP solvers and algorithms. 

3.5 State estimation and Kalman predictor 

In this section, the Kalman filter is applied as the third smoothing strategy to estimate the states of 

preceding vehicles to counteract the negative effects of measurement noise and acceleration 

disturbance. Further, with the prediction of vehicle acceleration from the Kalman predictor, in some 

situations, even though some V2V communication links are broken due to communication failure, 

we can reconstruct CACC from ACC to enhance control performance. 

3.5.1 Kalman filter structure 

The Kalman filter is implemented based on the discretized longitudinal vehicle dynamics 

𝑘𝑑,𝑚𝑖𝑛 ≤ 𝑘𝑑,𝑖(𝑘) ≤ 𝑘𝑑,𝑚𝑎𝑥 (3.46) 

𝑘𝑓,𝑚𝑖𝑛 ≤ 𝑘𝑓,1(𝑘) ≤ 𝑘𝑓,𝑚𝑎𝑥 (3.47) 

𝑘𝑓,𝑚𝑖𝑛 ≤ 𝑘𝑓,2(𝑘) ≤ 𝑘𝑓,𝑚𝑎𝑥 (3.48) 

𝑢𝑓,𝑖−𝑙(𝑘) =
𝑑𝑡

𝑑𝑡 + 𝑙ℎ𝑑
[𝑘𝑓,𝑙(𝑘) (

𝜏𝑖 + 𝑑𝑡

𝑑𝑡
𝑎𝑖−𝑙(𝑘) −

𝜏𝑖
𝑑𝑡
𝑎𝑖−𝑙(𝑘 − 1)) +

𝑙ℎ𝑑
𝑑𝑡
𝑢𝑓,𝑙(𝑘

− 1)] , 𝑙 ∈ {1,2} 

(3.49) 
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model considering measurement noise ℇ(𝑘) and input disturbance 𝑤(𝑘): 

in which 𝐴𝑖, 𝐵𝑖, and 𝑋̅𝑖(𝑘) are defined in the section of Controller Parameter Optimization, 

𝐵𝑤 = [0 0 𝑑𝑡]𝑇, 𝐶𝑖 = [
1 0 0
0 1 0

] is the output matrix of vehicle 𝑖 at time step 𝑘, 𝑦𝑖(𝑘) =

[𝑥𝑖(𝑘), 𝑣𝑖(𝑘)]
𝑇 is the output vector that can be directly measured by onboard sensors of the 

following vehicles, ℇ(𝑘) = [ℇ𝑥(𝑘), ℇ𝑣(𝑘)]
𝑇  is the measurement noise vector, ℇ𝑥(𝑘) is the 

noise in position measurement, ℇ𝑣(𝑘) is the noise in speed measurement, 𝑤(𝑘) is the vehicle 

acceleration disturbance induced by uncertainties (e.g., impact of road grade, unprecise throttle 

response). We assume that ℇ𝑥(𝑘)~𝒩(0, 𝜎𝑥) , ℇ𝑣(𝑘)~𝒩(0, 𝜎𝑣) , 𝑤(𝑘)~𝒩(0, 𝜎𝑎)  are all 

independent zero-mean Gaussian distributed random variables with known variance (Ploeg et 

al., 2015). In a homogeneous CAV platoon, 𝐴𝑖 , 𝐵𝑖 , 𝐶𝑖 , 𝜎𝑎 , 𝜎𝑥 , and 𝜎𝑣  are assumed to be 

identical for all CAVs in the platoon. 

The Kalman filter estimation consists of two steps. The first step is called a priori estimation: 

where 𝑋̂𝑖(𝑘 + 1|𝑘) = [𝑥𝑖(𝑘 + 1|𝑘), 𝑣𝑖(𝑘 + 1|𝑘), 𝑎𝑖(𝑘 + 1|𝑘)]
𝑇 , the prior estimated state 

vector of vehicle 𝑖 for next time step 𝑘 + 1, is predicted based on vehicle dynamics model 

(3.43), with the control input 𝑢𝑖(𝑘) at current time step 𝑘.  

The second step is called a posteriori estimation: 

in which the posterior estimated state vector 𝑋̂𝑖(𝑘 + 1|𝑘 + 1) is corrected from 𝑋̂𝑖(𝑘 + 1|𝑘) 
by applying optimal Kalman gain 𝐿𝐾𝐹,𝑖(𝑘 + 1) to minimize the difference between actual 

measurement 𝑦𝑖(𝑘 + 1)  and estimated output 𝑦̂𝑖(𝑘 + 1|𝑘) = 𝐶𝑖𝑋̂𝑖(𝑘 + 1|𝑘)  of vehicle 𝑖  at 

next time step 𝑘 + 1.  

The optimal Kalman gain is calculated as follows: 

Where: 

𝑀𝑖(𝑘) is covariance matrix of estimation error at time step 𝑘, and 𝑍𝑖(𝑘) is the estimation error 

at time step 𝑘. From (3.54)-(3.56), with the statistical information of measurement noise and 

input disturbance, the optimal Kalman gain can be calculated offline to improve the efficiency 

of real-time estimation process. 

Remark 3: The estimated vehicle states 𝑋̂𝑖(𝑘 + 1|𝑘) will be used to derive the tracking error 

𝐸(𝑠) , speed tracking error 𝐸̇(𝑠) , and vehicle accelerations (i.e., 𝑋̈𝑖−1(𝑠), 𝑋̈𝑖−2(𝑠)) in the 

𝑋̅𝑖(𝑘 + 1) = 𝐴𝑖𝑋̅𝑖(𝑘) + 𝐵𝑖𝑢𝑖(𝑘) + 𝐵𝑤𝑤(𝑘) (3.50) 

𝑦𝑖(𝑘) = 𝐶𝑖𝑋̅𝑖(𝑘) + ℇ(𝑘) (3.51) 

𝑋̂𝑖(𝑘 + 1|𝑘) = 𝐴𝑖𝑋̂𝑖(𝑘|𝑘) + 𝐵𝑖𝑢𝑖(𝑘) (3.52) 

𝑋̂𝑖(𝑘 + 1|𝑘 + 1)

= 𝐴𝑖𝑋̂𝑖(𝑘 + 1|𝑘)

+ 𝐿𝐾𝐹,𝑖(𝑘 + 1)[𝑦𝑖(𝑘 + 1) − 𝐶𝑖𝑋̂𝑖(𝑘 + 1|𝑘)] 
(3.53) 

𝐿𝐾𝐹,𝑖(𝑘 + 1) = 𝑀𝑖(𝑘 + 1)𝐶𝑖
𝑇(𝐶𝑖𝑀𝑖(𝑘 + 1)𝐶𝑖

𝑇 + ℇ)
−1

 (3.54) 

𝑀𝑖(𝑘 + 1) = 𝐴𝑖𝑍𝑖(𝑘)𝐴𝑖
𝑇 + 𝐵𝑤𝑊𝐵𝑤

𝑇  (3.55) 

𝑍𝑖(𝑘) = (𝐼2×2 − 𝐿𝐾𝐹,𝑖(𝑘)𝐶𝑖)𝑀𝑖(𝑘) (3.56) 
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control input (3.6), such that the smoothness of car-following behaviors can be improved. 

 

3.5.2 Kalman predictor and CACC reconstruction 

With proper adjustment of time index 𝑘 in (3.52), (3.53), and (3.54), we can derive the formula 

for the Kalman predictor. 

With the application of Kalman predictor, once vehicle 𝑖 obtains the control command 𝑢𝑖−1(𝑘) 
(𝑢𝑖−2(𝑘)) via V2V communication at time step 𝑘, and the position and speed measurements  

𝑦𝑖−1(𝑘 + 1) (𝑦𝑖−2(𝑘 + 1)) via onboard sensors at time step 𝑘 + 1 from the preceding vehicle 

𝑖 − 1 (𝑖 − 2), it can estimate the acceleration rate 𝑎𝑖−1(𝑘 + 1) (𝑎𝑖−2(𝑘 + 1)) of the preceding 

vehicle 𝑖 − 1 (𝑖 − 2) at time step 𝑘 + 1 to reconstruct the CACC scenarios. If the CACC 

reconstruction is feasible, the indicator values corresponding to specific controller set will be 

updated at time step 𝑘, such that the control input (3.6) of vehicle 𝑖 is reformulated into CACC 

mode as well. Table 3.2 presents the potential scenarios of CACC reconstruction.  

Specifically, if vehicle 𝑖 is controlled under CACC1 at time step 𝑘, then it can obtain vehicle 

states 𝑋̅𝑖−1(𝑘), 𝑋̅𝑖−2(𝑘) and control commands 𝑢𝑖−1(𝑘), 𝑢𝑖−2(𝑘) from vehicles 𝑖 − 1 and 𝑖 −
2. Then, at time step 𝑘 + 1: (i) If CACC1 degrades to CACC2 (the communication link 

between vehicle 𝑖  and vehicle 𝑖 − 2  breaks), vehicle 𝑖  can still obtain all vehicle states 

𝑋̅𝑖−1(𝑘 + 1) of vehicle 𝑖 − 1 (through CACC2). As vehicle 𝑖 − 1 can send position and speed 

measurements of vehicle 𝑖 − 2 to vehicle 𝑖 via V2V communications, vehicle 𝑖 can estimate 

the acceleration rate of vehicle 𝑖 − 2  using (3.57) to reconstruct CACC1. (ii) If CACC1 

degrades to CACC3 (the communication link between vehicle 𝑖 and vehicle 𝑖 − 1 breaks), 

vehicle 𝑖 can measure the position and speed of vehicle 𝑖 − 1 via onboard sensors, and estimate 

the acceleration information of vehicle 𝑖 − 1  using (3.57) to reconstruct CACC1. (iii) If 

CACC1 degrades to ACC (both communication links break), vehicle 𝑖 can still estimate the 

acceleration of vehicle 𝑖 − 1 using (3.57) based on the measurement 𝑦𝑖−1(𝑘 + 1). However, 

the acceleration of vehicle 𝑖 − 2 cannot be estimated due to the absence of speed and position 

measurements from vehicle 𝑖 − 2. 

 

Table 3.2. Scenarios of CACC reconstruction 

Time step 𝒌 Time step 𝒌 + 𝟏 

Control method Possible degeneration Reconstructed CACC 

CACC1 CACC2 CACC1 

CACC3 CACC1 

ACC CACC2 

CACC2 ACC CACC2 

CACC3 ACC ACC 

𝑋̂𝑖(𝑘 + 1|𝑘 + 1)

= 𝐴𝑖𝑋̂𝑖(𝑘|𝑘) + 𝐵𝑖𝑢𝑖(𝑘) + 𝐿𝐾𝐹,𝑖(𝑘

+ 1)[𝑦𝑖(𝑘 + 1) − 𝐶𝑖(𝐴𝑖𝑋̂𝑖(𝑘|𝑘) + 𝐵𝑖𝑢𝑖(𝑘))] 

(3.57) 
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If vehicle 𝑖 is controlled under CACC2 at time step 𝑘, it can obtain the control command 
𝑢𝑖−1(𝑘) from vehicle 𝑖 − 1. At time step 𝑘 + 1, if CACC2 degrades to ACC, vehicle 𝑖 can still 
obtain the position and speed of vehicle 𝑖 − 1 via onboard sensors, and then using (3.57) 
estimate the acceleration information of vehicle 𝑖 − 1 to reconstruct CACC2. 

If vehicle 𝑖  is controlled under CACC3 at time step 𝑘 , then it can obtain the control 
command 𝑢𝑖−2(𝑘) from vehicle 𝑖 − 2. At time step 𝑘 + 1, if CACC3 degrades to ACC, since 
vehicle 𝑖  has neither the information of control input from vehicle 𝑖 − 1  nor the 
measurement of position and speed from vehicle 𝑖 − 2, CACC reconstruction is infeasible. 

 

3.6 Numerical experiments 

3.6.1 Experiment setup 

This section presents three numerical experiments to illustrate the performance of the proposed 

CACC-SOIFT. The first experiment analyzes the performance of CACC-SOIFT in terms of 

maintaining string stability and smooth acceleration profile in the environment of dynamic IFT 

with sensor measurement noise and errors. To showcase the effectiveness of the three 

smoothing strategies, the second experiment compares the control performance of the proposed 

CACC-SOIFT to three cases of CACC: case (a) without the IFT optimization, case (b) without 

the controller parameter optimization, and case (c) without the Kalman predictor, where each 

case removes one smoothing strategy while retaining the other two. The third experiment 

illustrates the critical effects of time headway selection in the platoon control process. 

The platoon considered is a 12-CAV platoon with one leading CAV (𝑖 = 0) and 11 following 

CAVs. The movement of the leading CAV for all experiments is obtained from NGSIM field 

data (NGSIM, 2007), which contains a 4-minute vehicle trajectory collected on eastbound I-

80 at Emeryville, San Francisco, California, from 4:00pm to 4:15pm. We excluded the 

abnormal accelerations beyond the range of [−6, 4], and removed the choppy acceleration 

profile induced by measurement error. For the first two experiments, the desired time headways 

ℎ𝑑 are set as ℎ𝑑 = 1𝑠, while in the last experiment, time headway are set to be 0.5s, 1s, and 

2s, respectively, to evaluate the influence of time headway selection. The identical time 

headway is utilized throughout the platoon to prevent additional difference in controller 

transient response, which enables uniform traffic flow. The initial conditions for numerical 

experiments are: (i) initial acceleration of all CAVs in the platoon is 𝑎𝑖(0) = 0𝑚/𝑠
2; (ii) initial 

speed of all CAVs in the platoon is 𝑣𝑖(0) = 25𝑚/𝑠; (iii) initial spacing between adjacent 

CAVs is 𝑥𝑖−1(0) − 𝑥𝑖(0) = ℎ𝑑𝑣𝑖(0) + 𝐿𝑖, in which 𝐿𝑖 is the length of CAV 𝑖, and 𝐿𝑖 is set as 

5m for all CAVs. The sampling time 𝑑𝑡 = 0.1𝑠 for both experiments. The update interval of 

the IFT optimization is set to 1 minute to ensure the optimal IFT is corresponding to the 

potential changes of ambient traffic. We set 𝑃 = 𝐼2×2, 𝑄 = 4 for more emphasis and penalty 

on comfort. For the constraints of controller parameters, we set 𝑘𝑝,𝑚𝑖𝑛 = 0.5, 𝑘𝑝,𝑚𝑎𝑥 = 1.5, 

𝑘𝑑,𝑚𝑖𝑛 = 0.3, 𝑘𝑑,𝑚𝑎𝑥 = 1.2, 𝑘𝑓,𝑚𝑖𝑛 = 0, 𝑘𝑓,𝑚𝑎𝑥 = 1 , 𝛼 = 0.7, and 𝛽 = 0.3 by referring to 

Equation (3.12)-(3.14), Equation (3.20) and Equation (3.26). Note that we also applied the trial 

and error method to construct a feasible region for ensuring desired string stability and comfort 

performance. The parameter settings of vehicle inertial delay, measurement noise, and 

acceleration disturbance are according to the numerical experiment in (Ploeg et al., 2015): 𝜏𝑖 =
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0.1𝑠, 𝜎𝑥 = 0.17𝑚, 𝜎𝑣 = 0.13𝑚/𝑠, and 𝜎𝑎 = 0.1𝑚/𝑠
2. 

While the controller parameters of CACC-SOIFT, case (a), and case (c) are determined at each 

time step based on the second-layer controller parameter optimization model, the controller 

parameters of case (b) are set as the average values of controller parameters in CACC-SOIFT. 

To simulate the environment of dynamic IFT, the V2V communication success rate is 

calibrated using network simulator NS-3 based on the contention model described in the 

section of Probability of IFT Degeneration, and the calibration process is the same as our 

previous experiment (Wang et al., 2019). In the calibrated model, the communication success 

rate will decrease if the density of CAVs with activated “send” functionality in communication 

range increases. 

 

3.6.2 Experiment results 

The optimal IFTs obtained from the first-layer IFT optimization is 𝝃 =
[1,1,1,1,0,0,0,1,1,1,0,0]  for the first minute, 𝝃 = [1,1,1,1,1,0,0,1,1,1,0,0]  for the second 

minute, 𝝃 = [1,1,1,1,0,0,0,1,1,1,0,0]  for the third minute, and 𝝃 = [1,1,1,1,0,0,0,1,1,1,0,0] 
for the last minute. 

The first experiment tests the string stability of the CAV platoon and the smoothness of vehicle 

acceleration under the influence of dynamic IFT and measurement noise. Figures 3.4(a) and 

3.4(b) show the speed profile and acceleration profile of all vehicles in the platoon, 

respectively. 

Related to the first experiment, Fig. 3.4(a) illustrates that fluctuations of vehicle speed 

triggered by the abrupt acceleration/deceleration of leading vehicle are sequentially attenuated 

in the upstream of the platoon, reflecting acceptable string stability performance. In Fig. 3.4(b), 

the acceleration profiles of all vehicles are smooth compared to the choppy acceleration 

profiles (in the left corner) generated from CACC-DIFT (Gong et al., 2019) under the effect 

of measurement noise and uncareful parameter settings, indicating that abrupt changes in 

acceleration are mitigated by CACC-SOIFT. Also, as shown in Fig. 3.4(c), the maximum 

values of jerk of all following vehicles in the platoon are well below the uncomfortable value 

of ±0.3𝑚/𝑠3 based on a public surveys (Hoberock, 1977). Additionally, as illustrated in Fig. 

3.4(d), the ∞-norm of vehicle trajectory, speed, and acceleration all decrease sequentially 

upstream of the platoon, indicating the desired string stability property and attenuated traffic 

oscillations. Hence, even with the existence of dynamic IFT and contaminated vehicle 

kinematic states, CACC-SOIFT can still achieve the desired performance of string stability 

and riding comfort. 

The second experiment compares the proposed CACC-SOIFT to the CACC cases of removing 

one of the three smoothing strategies at a time. Figures 3.5(a) and 3.5(b) show that, compared 

to CACC-SOIFT, the other three CACC cases have larger mean values of jerk magnitude and 

greater standard deviation (STD) of speed fluctuations throughout the platoon, indicating 

poorer performance in terms of comfort and string stability. Note that in case (b), the mean 

value of jerk increases substantially for 6th (𝑖 = 5) and 12th (𝑖 = 11) vehicles, while the STDs 

of vehicle speed fluctuations increase appreciably after the 6th vehicle. This phenomenon can 

be explained as: the predecessors of 6th and 12th vehicles deactivate their send functionalities 

for most of the time due to IFT optimization, which triggers ACC for both vehicles. Thereby, 

the control performance deteriorates as the parameter optimization is not performed. The 
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results show that all three strategies in CACC-SOIFT are essential to improve string stability 

and riding comfort. 

The third experiment sheds some light on the time headway selection. As shown in Fig. 3.6(a) 

and 6(b), the mean of jerk magnitude corresponding to the platoon with smaller time headway 

envelops the platoon with greater time headway, and the standard deviation of vehicle speed 

referring to the platoon with smaller time headway also bounds the platoon with greater time 

headway. The results indicate that smaller headway selection will induce greater jerks and 

more speed fluctuations, jeopardizing the control performance regarding to string stability and 

riding comfort, thereby, a proper selection of time headway is significant for the real-world 

application. 

 

 

 

(a). Vehicle speed profile (b). Vehicle acceleration profile 

 

 

 
 

(c). Maximum value of vehicle jerk 
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(d). ∞-norm of vehicle states 

 

Figure 3.4. Performance of the CACC-SOIFT 

 

 

 

 

  

          (a). Mean value of jerk      (b). Standard deviation of vehicle speed 

 

Figure 3.5. Comparisons of different CACC cases 
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              (a). Mean value of jerk  (b). Standard deviation of vehicle speed 

Figure 3.6. Comparisons of different headway selections in CACC-SOIFT 

  



 

58 
 

 

4. A REAL-TIME DEPLOYABLE MODEL PREDICTIVE CONTROL-BASED COOPERATIVE PLATOONING 
APPROACH FOR CONNECTED AND AUTONOMOUS VEHICLES 

4.1 Introduction 

Connected and autonomous vehicle (CAV) technologies provide disruptive and transformational 

opportunities for innovations toward intelligent transportation systems. Unlike human-driven 

vehicles, CAVs have shorter reaction times, better knowledge of ambient traffic (in terms of speed, 

position, acceleration, etc.), and faster information processing speeds. These characteristics enable 

CAVs to form platoons to drive cooperatively on the road, in which a vehicle maintains a small and 

nearly constant headway with its preceding vehicle. Past studies suggest that vehicle platooning of 

CAVs can benefit transportation systems in many ways (Jia et al., 2015). It can increase road 

capacity, reduce energy consumption and tailpipe emissions, and facilitate vehicle-to-vehicle based 

applications (involving data sharing and dissemination) due to the relatively fixed positions of 

vehicles within a platoon.  

In the literature, many adaptive cruise control (ACC) models and cooperative ACC (CACC) models 

have been proposed to control longitudinal car-following behavior of vehicles to enable efficient 

vehicle platooning. The ACC makes car-following decisions based on the preceding vehicle’s 

information (speed and position) obtained through onboard sensors (e.g., VanderWerf et al., 2001; 

Hasebe et al., 2003; Kesting et al., 2008; Darbha and Rajagopal, 1999), while CACC makes car-

following decisions with more information (speed, position and/or acceleration) from either a single 

vehicle or multiple vehicles in the platoon by leveraging connectivity technologies. The CACC 

models can improve the stability and efficiency of the ACC models by reducing the delay in 

responding to the preceding vehicle. According to Wang et al. (2014b), CACC models can be 

divided into two categories, the cooperative sensing-based models and the cooperative behavior-

based models. The cooperative sensing-based models seek to optimize individual vehicle’s 

performance using, for example, the immediate preceding vehicle’s information (with acceleration) 

(Rajamani, R., Shladover, S.E. 2001, Desjardins and Chaib-draa, 2011), multiple preceding 

vehicles’ information (Li et al., 2011; Jia and Ngoduy, 2016; Ge and Orosz, 2014; Ploeg et al., 

2014) or the preceding-and-following vehicles’ information (Zheng et al., 2016; Nakayama et al., 

2001). It is important to note that the behaviors of vehicles controlled by these models are non-

cooperative. That is, the control is not based on viewing a group of vehicles as an integrated system, 

which can deteriorate system (platoon) performance in terms of safety, mobility, energy 

consumption, etc.  

To bridge this gap, recently, cooperative behavior-based CACC models have been proposed to 

coordinate the behaviors (accelerations or decelerations) of all of the following vehicles in a CAV 

platoon (e.g., Wang et al., 2014a; Zhou et al., 2017; Gong and Du, 2018). Most of these models are 

developed by leveraging the model predictive control (MPC) cooperative control approach. The 

MPC approach incorporates an optimal control problem to optimize the control decisions of the 

following vehicles in the platoon for some future period (labeled prediction horizon) to maximize 

the platoon performance based on the vehicles’ state information at the current time. It has the 

flexibility to deal with multiple design criteria and constraints on state and control variables. Wang 

et al. (2014a) propose a MPC approach to coordinate the behaviors of all CAVs in a platoon to 

optimize a cost function reflecting different control objectives. Numerical applications illustrate 
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that this approach can lead to smoother deceleration behavior and more responsive and agile 

acceleration behavior compared to non-cooperative controllers. Zhou et al. (2017) extend Wang et 

al. (2014a) by addressing the impacts of uncertainty in both system dynamics and sensor 

measurements on vehicle control. They propose a discrete Kalman filter to estimate the system state 

and a stochastic MPC approach to determine the optimal control. Gong and Du (2018) apply the 

MPC approach to coordinate multiple CAV platoons separated by human driven vehicles to 

enhance the smoothness and stability of the mixed flow platoon. Wang et al. (2019) provide a 

detailed review of the recent CAV trajectory control methods. 

While the aforementioned MPC-based cooperative control strategies can coordinate the car-

following behaviors of CAVs in a platoon effectively, their real-time deployability requires that at 

each sampling time instant, the group of CAVs solve the embedded optimal control problem 

instantaneously (i.e., in much less than 0.1 seconds) to obtain the vehicles’ control decisions based 

on their detected states (e.g., speed and positions) at that instant. These decisions then need to be 

executed to control the CAV platoon at the sampling time instant with no delay. However, this 

requirement cannot be satisfied in practice due to the computational time required by the CAVs to 

solve the optimal control problem. As pointed by Zhou et al. (2017), the computational time for 

solving the optimal control problem increases monotonically with the number of vehicles in the 

platoon and the prediction horizon. It can become intractable in real traffic systems due to the 

expansion of the dimensionality of state and control input spaces (Wang et al., 2016). Thereby, 

based on platoon size and prediction horizon length, the computational time of the optimal control 

problem can cause significant delay (labeled control delay) in the execution of the optimal control 

decisions for the CAV platoon. As the CAVs’ states change dynamically, the control delay can 

significantly deteriorate performance and even induce vehicle collisions. This precludes these 

MPC-based cooperative control strategies for a CAV platoon from being applied in real-time.  

Some recent studies have sought to reduce the control delay induced by the computational time to 

solve the optimal control problem embedded in MPC-based cooperative control strategies. Wang 

et al. (2016) propose a decentralized MPC strategy which considers cooperation among only two 

vehicles in a decoupled platoon system, which reduces the computational time substantially as only 

two vehicles’ control decisions are optimized simultaneously. However, the performance of the 

CAV platoon cannot be enhanced to the fullest under this strategy as only two vehicles’ behaviors 

are coordinated at the same time under a common objective. Further, the computational time for 

solving the optimal control problem can increase with the prediction horizon for even the decoupled 

platoon system. Gong and Du (2018) propose a distributed solution algorithm to reduce 

computational time by distributing the computational tasks among all CAVs in the platoon. 

However, the computational time of this algorithm can increase dramatically with platoon size and 

prediction horizon. Hence, these methods (e.g., Wang et al., 2016; Gong and Du, 2018) alleviate 

the issue of control delay of MPC-based cooperative control strategies to only a certain extent, but 

are still limited by platoon size and/or prediction horizon. 

This study develops two real-time deployable MPC-based approaches that address the issue of the 

control delay at a fundamental level. In this study, the phrase “real-time deployable” refers to the 

capability that these approaches can overcome the control delay issue and can provide the optimal 

control decisions for all following vehicles in the platoon instantaneously at each sampling time 

instant. To do so, first, an idealized MPC-based cooperative control strategy is proposed by 

modifying the strategies proposed by Wang et al. (2014a) and Zhou et al. (2017). It can coordinate 
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the behavior of all of the following CAVs in the platoon to maneuver them efficiently and safely 

on the idealized assumption that the embedded optimal control problem can be solved 

instantaneously. To relax this assumption, two deployable approaches, labeled the deployable MPC 

(DMPC) approach and the DMPC with first-order approximation (DMPC-FOA) approach, are 

proposed to address the issue of computational delay associated with solving the optimal control 

problem in the idealized MPC-based strategy. It should be noted that to enable efficient 

coordination of the car-following behaviors of all CAVs in the platoon, such approaches need to 

accurately characterize the optimal control decisions of the idealized MPC-based strategy.  

The DMPC approach reserves sufficient time before each sampling time instant to solve the optimal 

control problem so that the optimal control decisions can be obtained in advance to be executed at 

the corresponding sampling time instant with no delay. However, as the leading vehicle of a platoon 

needs to respond to the dynamics of the vehicles downstream of it, its behavior cannot be controlled 

and coordinated with those of the following vehicles in the platoon. Thereby, its position and speed 

at each sampling time instant need to be predicted ahead of that time, which is determined by the 

time reserved for computing. Hence, the optimal control decisions of the DMPC approach can 

deviate from that of the idealized MPC strategy due to error in predicting the leading vehicle’s 

position and speed in advance. To address this problem, the DMPC-FOA approach is proposed to 

more accurately characterize the optimal control decisions of the idealized MPC strategy. Before 

each sampling instant, the DMPC-FOA approach reserves sufficient time to determine not only the 

optimal control decisions using the leading vehicle’s predicted position and speed at the sampling 

time instant, but also the derivatives of the estimated optimal control decisions with respect to the 

leading vehicle’s position and speed. Thereby, at the sampling time instant when the leading 

vehicle’s actual position and speed are detected, the first-order Taylor approximation method can 

be applied to correct the estimated optimal control decisions for the following vehicles. Numerical 

experiments illustrate that the DMPC-FOA approach can address the issue of control delay while 

accurately estimating the optimal control decisions of the idealized MPC strategy.  

The contributions of this study are fivefold. First, an idealized MPC strategy is proposed to 

coordinate the behaviors of the following vehicles in the platoon by modifying the control strategies 

proposed by Wang et al. (2014a) and Zhou et al. (2017).  Further, a solution algorithm is proposed 

to solve the optimal control problem with both control constraints and pure state constraints in the 

idealized MPC strategy. A two-point boundary value problem is derived based on the necessary 

conditions for optimality to obtain the optimal control decisions to coordinate the behaviors of all 

vehicles in the platoon to maximize the platoon performance. Second, the study develops the 

DMPC-FOA approach that simultaneously addresses the control delay issue while accurately 

characterizing the optimal control decisions of the idealized MPC strategy. Thereby, it can be 

applied in real-time to efficiently coordinate the car-following behaviors of all CAVs in a platoon. 

Third, the method for sensitive analysis of the optimal control problem is analytically formulated. 

It can quantitatively measure the impact of parametric perturbations (e.g., perturbations of initial 

state of the leading vehicle) on the optimal control decisions and the platoon performance. Fourth, 

this study show analytically that the derivatives of the optimal control decisions with respect to the 

parametric perturbations are the same when the inequality constraints in the proposed optimal 

control problem (e.g., acceleration range constraints, speed range constraints, spacing headway 

constraints) are inactive in some traffic scenarios (e.g., uncongested traffic flow with mild 

acceleration and deceleration behavior of the leading vehicle). These results can be used as the 

initial point in the algorithm to solve for these derivatives faster when the constraints in the optimal 
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control problem are active in certain traffic scenarios (e.g., very congested flow). This enhances 

the real-time application of the proposed method. Fifth, an analytical method is provided for 

stability analysis of the idealized MPC strategy. It helps to identify the inputs of the parameters in 

the idealized MPC strategy to better dampen the oscillations in the platoon.   

It is important to note that this study is fundamentally different from that of Wang et al. (2018b), 

which discusses a compensation strategy for sensor delay and actuator lag. The compensation 

strategy can account for the differences between the sensed kinematic states of all following 

vehicles and the actual ones at the sampling time instant by leveraging the optimal control decisions 

for all following vehicles in the last control cycle. However, in their study, the computational time 

for solving the optimal control problem is neglected. Thereby, they do not study the impacts of the 

prediction error of the leading vehicle’s state at the sampling time instant on the optimal control 

decision. Note that the leading vehicle’s behavior cannot be controlled. Thereby, unlike for the 

following vehicles in the platoon, the deviation between the predicted leading vehicle’s state and 

the actual one at the sampling time instant cannot be compensated using the method proposed in 

Wang et al. (2018b). 

The remainder of this paper is organized as follows. The next section provides the analytical 

formulation of the idealized MPC cooperative control strategy for a CAV platoon and discusses the 

framework for the DMPC and DMPC-FOA approaches. Section 4.3 introduces the solution 

algorithm to solve the optimal control problem in the idealized MPC strategy. The method for the 

sensitivity analysis of the optimal control problem is presented in Section 4.4. Section 4.5 discusses 

the conditions for the stability of the idealized MPC strategy without inequality constraints. Section 

4.6 discusses results of numerical experiments to compare the control performance of the idealized 

MPC strategy and the DMPC and DMPC-FOA approaches. The last section provides some 

concluding comments. 

 

4.2 MPC approaches for longitudinal control of CAV platoon 

4.2.1 An idealized MPC cooperative control strategy for a CAV platoon 

This section presents an idealized MPC strategy to control the CAVs in a platoon cooperatively 

by modifying the control strategies developed by Wang et al. (2014a) and Zhou et al. (2017). 

It seeks to coordinate the behavior of all following vehicles to: (1) maintain a desired safe 

spacing (labeled equilibrium spacing) between two consecutive vehicles in a platoon, and 

reduce traffic flow oscillations in terms of spacing and speed changes, and (2) maximize the 

comfort of travelers in these vehicles by minimizing deceleration and acceleration. The details 

of the idealized MPC strategy are as follows.  

Consider a stream of CAVs in a single highway lane as shown in Fig. 4.1. Let 0,1,2⋯ , 𝑛 

represent the CAVs in the platoon sequentially with 0 being the leading CAV and 𝑛 being the 

tail CAV. The following assumptions will be used to design the longitudinal control of the 

CAV platoon: 

All vehicles in the platoon are CAVs. 

Two-way V2V communications exist between the leading vehicle and each of the following 

vehicles in the platoon (see Fig.1). Each following vehicle sends real-time information (speed 
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and position) to the leading vehicle. The leading vehicle sends the computed optimal control 

decisions to each of the following vehicles to control their driving behavior. 

All CAVs can sense their kinematic states (speed, position, etc.) accurately and can send that 

information to the leading vehicle of their platoon instantaneously. 

The leading CAV computes and sends the optimal control decisions (i.e., accelerations and 

decelerations) to all of the following CAVs which implement these decisions. 

The actuator delay is negligible; that is, vehicles can implement the control instantly. 

The pavement of the highway lane is in good condition and longitudinal slope is negligible. 

 

0123n

Optimal control 

decision of vehicle n

Speed and position of 

vehicles in the platoon 

Optimal control 

decision of vehicle 1

Optimal control 

decision of vehicle 3
Optimal control 

decision of vehicle 2

 
Figure 4.1. A CAV platoon stream. 

 

In this study, we treat a platoon of CAVs as an integrated system, in which vehicles within the 

platoon are controlled in a coordinated manner. Define the state of a follower vehicle 𝑖 as 

(𝑠𝑖(𝑡) − 𝑠𝑖
∗(𝑡), 𝑣𝑖(𝑡) − 𝑣𝑖−1(𝑡)), where 𝑠𝑖(𝑡) is the spacing of vehicle 𝑖 with its predecessor 

vehicle at time 𝑡, 𝑣𝑖(𝑡) is the speed of vehicle 𝑖 at time 𝑡, and 𝑠𝑖
∗(𝑡) is the equilibrium spacing 

at time 𝑡.  

This study uses the constant time headway policy to determine the equilibrium spacing. 

Thereby, 𝑠𝑖
∗(𝑡) = 𝑟𝑖

∗ ∙ 𝑣𝑖(𝑡) + 𝑠𝑓, where 𝑟𝑖
∗ is the constant time headway for vehicle 𝑖 and 𝑠𝑓 

is the safe distance to the predecessor vehicle.  

For simplicity, the constant time headway for each follower vehicle in the platoon is assumed 

to be the same, i.e., 𝑟𝑖
∗ = 𝑟∗, ∀𝑖 = 1,2,⋯𝑛. Let 𝑥𝑖(𝑡) = 𝑠𝑖(𝑡) − 𝑠𝑖

∗(𝑡), ∀𝑖 be the position error 

between the desired spacing and actual spacing of vehicle 𝑖 from its predecessor vehicle at time 

𝑡. Denote 𝑦𝑖(𝑡) as the speed difference of vehicle 𝑖 from its predecessor vehicle at time 𝑡, i.e., 

𝑦𝑖(𝑡) = 𝑣𝑖(𝑡) − 𝑣𝑖−1(𝑡). Denote 𝑑𝑖(𝑡) as the longitudinal position of CAV 𝑖 in the platoon at 

time 𝑡. Then, 

𝑥𝑖(𝑡) = 𝑑𝑖−1(𝑡) − 𝑑𝑖(𝑡) − 𝑟
∗ ∙ 𝑣𝑖(𝑡) − 𝑠𝑓 (4.1) 

and  

𝑥̇𝑖(𝑡) = 𝑣𝑖−1(𝑡) − 𝑣𝑖(𝑡) − 𝑟
∗ ∙ 𝑢𝑖(𝑡)       

(4.2a) 

𝑦̇𝑖(𝑡) = 𝑢𝑖(𝑡) − 𝑢𝑖−1(𝑡)       

(4.2b) 

where 𝑥̇𝑖(𝑡) is the first-order derivative of position error of vehicle 𝑖  from its predecessor 

vehicle with respect to time 𝑡. 𝑦̇𝑖(𝑡) is the first-order derivative of speed difference of vehicle 

𝑖 from its predecessor vehicle with respect to time 𝑡. 𝑢𝑖(𝑡) is the acceleration of CAV 𝑖 at time 
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𝑡.  

Assume that the leading vehicle 0 travels at a constant speed. The spacing of vehicle 𝑖, ∀𝑖 =
1,2,⋯ , 𝑛 from its predecessor vehicle can then be expressed as:  

𝑠𝑖(𝑡) = 𝑥𝑖(𝑡) + 𝑟
∗ ∙ (𝑣0(𝑡) +∑ 𝑦𝑗(𝑡)

𝑖

𝑗=1
) + 𝑠𝑓 , ∀𝑖 = 1,2,⋯ , 𝑛 

       

(4.3) 

Denote 𝐱(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡),⋯ , 𝑥𝑛(𝑡)]
𝑇 , 𝐲(𝑡) = [𝑦1(𝑡), 𝑦2(𝑡),⋯ , 𝑦𝑛(𝑡)]

𝑇 , and 𝒖(𝑡) =
[𝑢1(𝑡), 𝑢2(𝑡),⋯ , 𝑢𝑛(𝑡)]

𝑇.  𝐱(𝑡) and 𝐲(𝑡) are vectors of state variables. Then, the dynamics of 

the states (i.e., 𝐱 and 𝐲) are as follows: 

⌈
𝐱̇(𝑡)

𝐲̇(𝑡)
⌉ = [

𝟎𝑛 −𝑬𝑛
𝟎𝑛 𝟎𝑛

]
⏟      

𝑨

⌈
𝐱(𝑡)

𝐲(𝑡)
⌉ + [

𝐌
𝑺
]

⏟
𝑩

∙ 𝒖(𝑡) (4.4) 

where 𝐱̇(𝑡) and 𝐲̇(𝑡) are first-order derivatives of 𝐱(𝑡) and 𝐲(𝑡) with respect to time 𝑡, 𝟎𝑛 is 

the 𝑛-dimensional zero square matrix, and 𝐌 = −𝑟∗ ∙ 𝑬𝑛 , 𝑬𝑛  is the 𝑛-dimensional identity 

matrix. Matrices 𝑨 and 𝑩 are defined in Eq. (4.4.4). The matrix 𝑺 is: 

𝑺 =

[
 
 
 
 
1
−1 1

−1 1
⋱ ⋱

−1 1 ]
 
 
 
 
𝑛×𝑛

  

Following the elucidation of the state variables, the next step in developing the idealized MPC 

strategy is the conceptual illustration of its implementation framework and computational 

procedure, as shown in Figs. 4.2(a) and 4.2(b), respectively. In Fig. 4.2(a), let 𝑡𝑘(𝑘 = 1,2,3⋯ ) 
be the sampling time instant at which new optimal control decisions should be executed to 

control vehicles in the platoon, 𝑇𝑃 be the prediction horizon for which the optimal control 

decisions are determined, and  ∆𝑡 (∆𝑡 ≤ 𝑇𝑃) be the roll period for which these decisions are 

implemented. Such a rolling horizon framework enables the practical implementation of the 

control strategy by trading off (solution) computational time with solution accuracy by limiting 

the prediction horizon size while being responsive to unfolding traffic conditions.  

Thereby, for a sampling time instant 𝑡𝑘, the new optimal control decisions are calculated for 

the prediction horizon [𝑡𝑘, 𝑡𝑘 + 𝑇𝑃], but only implemented for the roll period [𝑡𝑘, 𝑡𝑘 + ∆𝑡] by 

the following vehicles in the platoon to control their behavior. Then, at the next sampling time 

instant 𝑡𝑘+1 (where 𝑡𝑘+1 = 𝑡𝑘 + ∆𝑡), the procedure is repeated to determine and implement 

the optimal control decisions for all following CAVs in the platoon for roll period 
[𝑡𝑘+1, 𝑡𝑘+1 + ∆𝑡]. This procedure is repeated until the platoon dissipates. 
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Figure 4.2.  The idealized MPC strategy: (a) Implementation framework, and (b) Computational 

procedure. 

 

Next, the idealized MPC strategy to determine the optimal control decisions and its 

computational procedure are exposited. Let 𝐳(𝑡) = [𝐱(𝑡)𝑇 , 𝐲(𝑡)𝑇]𝑇. Following Wang et al. 

(2014a) and Zhou et al. (2017), at each sampling time instant 𝑡𝑘, ∀𝑘 = 0,1,2⋯, the optimal 

control decisions of all of the following vehicles in the platoon can be obtained by solving the 

following optimal control problem: 

min
𝒖
∫

1

2
𝑒−𝛽𝑡𝐿(𝒛(𝑡), 𝒖(𝑡))

𝑇𝑃

0

𝑑𝑡 +
1

2
𝑒−𝛽𝑇𝑃𝜙(𝐳(𝑇𝑃)) (4.5a) 

𝐳̇(𝑡) = 𝑨 ∙ 𝐳(𝑡) + 𝑩 ∙ 𝒖(𝑡) (4.5b) 

𝑠𝑖(𝑡) = 𝑥𝑖(𝑡) + 𝑟
∗ ∙ (𝑣0(0) +∑ 𝑦𝑗(𝑡)

𝑖

𝑗=1
) + 𝑠𝑓 ≥ s𝑚𝑖𝑛; 𝑖 = 1,2,⋯ , 𝑛 (4.5c) 

0 ≤ 𝑣𝑖(𝑡) ≤ 𝑣𝑚𝑎𝑥; 𝑖 = 1,2,⋯ , 𝑛 (4.5d) 

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑖 ≤ 𝑢𝑚𝑎𝑥; 𝑖 = 1,2,⋯ , 𝑛 (4.5e) 

𝐳(0) = [𝐱0
𝑇 𝐲0

𝑇]𝑇 (4.5f) 

where  
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𝐿(𝒛(𝑡), 𝒖(𝑡)) = 𝐳(𝑡)𝑇 [
𝑹1

𝑹2
] 𝐳(𝑡) + 𝒖(𝑡)𝑇𝑹3𝒖(𝑡) 

(

5

g

) 

𝜙(𝐳(𝑇𝑃)) = 𝐳(𝑇𝑃)
𝑇 [
𝑹4

𝑹5
] 𝐳(𝑇𝑃) 

(

5

h

) 

In problem (4.5), for expository convenience, we consider a generic prediction horizon and 

ignore the sampling time instant 𝑡𝑘. So, 𝑡 ∈ [0, 𝑇𝑃] without loss of generality in (4.5). Here, 

𝑹1 , 𝑹2 ,  𝑹3  𝑹4 , and 𝑹5  are weight matrices; 𝑹1 , 𝑹2 ,   𝑹4 , and 𝑹5  are symmetric positive 

definite matrices; and 𝑹3  is a positive definite diagonal matrix (Zhou et al., 2017).  

𝐿(𝒛(𝑡), 𝒂(𝑡)) is the running cost which is the cost incurred during an infinitesimal period 

(Wang et al. 2014a). It consists of two terms. The first term 𝐳(𝑡)𝑇 [
𝑹1

𝑹2
] 𝐳(𝑡) seeks to 

minimize the position errors and the relative speed of all adjacent vehicle pairs. The second 

component (i.e., 𝒖(𝑡)𝑇𝑹3𝒖(𝑡) ) is to maximize comfort by reducing hard braking and 

acceleration. 𝑒−𝛽𝑡 is a term to weight the running cost at different times and 𝛽 is the discount 

coefficient. This term provides higher weight for the running cost for the near-term future than 

for the longer-term future as the uncertainty in running cost increases with time (Wang et al., 

2014a). 𝜙(𝐳(𝑇𝑃)) is the terminal cost which is used to penalize the value of objective function 

if the values of the state variables at the end of the prediction horizon deviate from the 

equilibrium point (i.e., 0). Eq. (4.5b) describes the dynamics of the state variables (i.e., position 

errors and relative speeds of all adjacent vehicle pairs in the platoon). Eq. (4.5c) is a safety 

constraint to ensure that the spacing between two consecutive CAVs in the platoon is always 

larger than a positive lower bound s𝑚𝑖𝑛, s𝑚𝑖𝑛 > 0. Eq. (4.5d) specifies that the range of the 

speed of each vehicle in the platoon. 𝑣𝑚𝑎𝑥 is the speed limit of the road. Eq. (4.5e) specifies 

the upper bound (𝑢𝑚𝑎𝑥 ) and lower bound (𝑢𝑚𝑖𝑛 ) of the acceleration. These inequality 

constraints are extensively used in literature for designing effective control method for CAV 

platoon (see e.g., Wang et al., 2018b; Lu et al., 2019). Eq. (4.5f) specifies the initial inputs for 

the state variables. Hence, for example, for any sampling time instant 𝑡𝑘 , 𝐱𝑘 =
[𝑥1(𝑡𝑘), 𝑥2(𝑡𝑘),⋯ , 𝑥𝑛(𝑡𝑘)]  and 𝐲𝑘 = [𝑦1(𝑡𝑘), 𝑦2(𝑡𝑘),⋯ , 𝑦𝑛(𝑡𝑘)]  are values of 𝐱0

𝑇  and 𝐲0
𝑇 , 

respectively.  

There are primarily two differences between optimal control problem (4.5) and the ones 

developed by Wang et al. (2014a) and Zhou et al. (2017). First, a term 𝑒−𝛽𝑡 is added to the 

objective function to weight the running costs at different times. Second, a terminal cost 

𝜙(𝐳(𝑇𝑃)) is added to penalize the objective function if the state variables deviate from the 

equilibrium point 0 at the end of the prediction horizon. These two terms will be useful to 

analyze the stability of the idealized MPC strategy. In addition, for convenience of stability 

analysis, the weight matrices 𝑹𝑖(𝑖 = 1,2,4,5) are assumed to have the following forms: 

𝑹1 = 𝜦
𝑻𝑫𝑎𝜦, 𝑹2 = 𝜦

𝑻𝑫𝑏𝜦, 𝑹4 = 𝜦
𝑻𝑫𝑐𝜦, and 𝑹5 = 𝜦

𝑻𝑫𝑒𝜦  (4.6) 

where 𝜦 is an orthogonal matrix, 𝜦𝑇𝜦 = 𝜦𝜦𝑇 = 𝑬𝑛 , and  𝑫𝑎 , 𝑫𝑏 , 𝑫𝑐  and 𝑫𝑒  are positive 

definite diagonal matrices. The inputs of these weight matrices will be determined by the 
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stability analysis in Section 4.5. Eq. (4.6) shows that if 𝜦 = 𝑬𝑛, then 𝑹1, 𝑹2, 𝑹4, and 𝑹5 are 

positive definite diagonal matrices.  

Let 𝐳(𝑡𝑘)  be the actual values of the state variables at the sampling time instant 

𝑡𝑘, (𝑘 = 1,2,⋯ ), 𝐳(𝑡𝑘) = [𝐱𝑘
𝑇 𝐲𝑘

𝑇]𝑇 . The computational procedure of the idealized MPC 

strategy is summarized in Fig. 4.2(b). At each sampling time instant 𝑡𝑘(𝑘 = 1,2,⋯ ), the 

leading vehicle obtains the value of 𝐳(𝑡𝑘) through V2V communications. It solves the optimal 

control problem (4.5) to determine the optimal control decisions (i.e.,𝒖∗(𝑡) ) during the 

prediction horizon [𝑡𝑘, 𝑡𝑘 + 𝑇𝑃] by inputting the value of  𝐳(𝑡𝑘) into Eq. (4.5e). The optimal 

control decisions are sent by the leading vehicle to the following vehicles to control their 

behaviors only for the roll period [𝑡𝑘, 𝑡𝑘 + ∆𝑡], (i.e., [𝑡𝑘, 𝑡𝑘+1]). Then, at the sampling time 

instant 𝑡𝑘+1, the optimal control problem (4.5) is solved again to obtain the optimal control 

decisions 𝒖∗(𝑡) for the prediction horizon [𝑡𝑘+1, 𝑡𝑘+1 + 𝑇𝑃], and is implemented to control the 

CAV platoon for the roll period [𝑡𝑘+1, 𝑡𝑘+1 + ∆𝑡]. These steps are repeated at each sampling 

time instant.  

As can be noted, the idealized MPC strategy computes the optimal control decisions by solving 

optimal control problem (4.5) at each sampling time instant and implements it to control the 

CAVs for the roll period starting at that instant. To achieve this, it is assumed that the leading 

vehicle can solve the optimal control problem (4.5) of the idealized MPC strategy 

instantaneously at each sampling time instant 𝑡𝑘. However, in practice, the computational time 

for solving optimal control problem (4.5) increases with platoon size and prediction horizon 

size. It can cause significant delays in executing the control decisions, which can deteriorate 

the performance and even lead to vehicle collisions. Thereby, while the idealized MPC strategy 

can coordinate the behavior of the following vehicles in the platoon to maneuver them 

efficiently and safely, it cannot be deployed to control the CAV platoon in real-time.  

 

4.2.2 DMPC approach framework 

The leading vehicle of a CAV platoon needs to respond to the dynamics of the vehicles 

downstream of it. Thereby, its behavior is not known in advance. However, the behavior of all 

following vehicles in the platoon for each roll period can be estimated at the corresponding 

sampling time instant through the known optimal control decisions of the previous roll period 

(i.e., 𝒖∗(𝑡), 𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘−1 + ∆𝑡]). To account for this difference, we divide 𝐳(𝑡) into two 

parts, 𝒛1(𝑡) and 𝒛2(𝑡). We denote the vector of position error and speed difference of vehicle 

1 from that of the leading vehicle 0 as 𝒛1(𝑡) = [𝑥1(𝑡), 𝑦1(𝑡)]
𝑇, and the vector of state variables 

for the other following vehicles as 𝒛2(𝑡) = [𝑥2(𝑡), 𝑥3(𝑡),⋯ , 𝑥𝑛(𝑡), 𝑦2(𝑡), 𝑦3(𝑡),⋯ , 𝑦𝑛(𝑡)]
𝑇. 

At each sampling time instant 𝑡𝑘, the value of 𝒛1(𝑡𝑘) cannot be computed in advance due to 

the unknown position and speed of the leading vehicle at that instant. However, 𝐳2(𝑡𝑘) can be 

estimated in advance at a short time before the sampling time instant 𝑡𝑘.  

We propose the DMPC approach to address the strong assumption of the idealized MPC 

strategy that the optimal control problem (4.5) can be solved instantaneously. The 

implementation framework for the DMPC approach is shown in Fig. 4.3(a). Unlike the 

idealized MPC strategy, the DMPC approach reserves a sufficient amount of time, labeled 

reserved time (denoted as 𝜏1), before each sampling time instant 𝑡𝑘 (𝑘 = 1,2,⋯ ) to solve the 

optimal control problem (4.5) so that the optimal control decisions are available at 𝑡𝑘 for the 

corresponding roll period. It is important to note that the roll period ∆𝑡 should be larger than 
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𝜏1 to enable the real-time implementation of the DMPC approach.  

The DMPC computational procedure is illustrated in Fig. 4.3(b). The DMPC approach starts 

to solve the optimal control problem at time 𝑡𝑘 − 𝜏1 to predict the values of all state variables 

at time 𝑡𝑘 (i.e., 𝐳(𝑡𝑘)). As stated in the assumptions, the leading vehicle can obtain the actual 

states of all following vehicles at time instant 𝑡𝑘 − 𝜏1 through V2V communications. Also, as 

discussed earlier in this section, it knows the control decisions of all following vehicles in the 

time period [𝑡 − 𝜏1, 𝑡𝑘] as they are determined at the beginning of the previous roll period. 

The DMPC approach leverages these two sets of inputs to predict 𝐳2(𝑡𝑘) with low error. This 

is because in the context of the CAV platooning application, 𝜏1 is much smaller than the roll 

period, in the order of a fraction of a second. Hence, as the actual states are available close to 

𝑡𝑘, and prior control decisions are known, we assume that the error in estimating 𝐳2(𝑡𝑘) is 

negligible. 

 

 

 
 

Figure 4.3.  The DMPC approach: (a) Implementation framework, and (b) Computational procedure. 

 

As discussed earlier, the leading vehicle’s behavior is not known in advance. Thereby, 𝐳1(𝑡𝑘) 
cannot be estimated with low error unlike 𝐳2(𝑡𝑘). Hence, the value of 𝐳1(𝑡𝑘) needs to be 

predicted at time instant 𝑡𝑘 − 𝜏1. To do so, the leading vehicle’s behavior at 𝑡𝑘 needs to be 

predicted at 𝑡𝑘 − 𝜏1. As 𝜏1 is much smaller than the roll period, we assume the acceleration of 

the leading vehicle 0 during the small time interval [𝑡𝑘 − 𝜏1, 𝑡𝑘] remains the same as at time 

instant 𝑡𝑘 − 𝜏1. Then, 

𝑣0(𝑡𝑘) = 𝑣0(𝑡𝑘 − 𝜏1) + 𝑢0(𝑡𝑘 − 𝜏1) ∙ 𝜏1 (4.7a) 
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𝑑̂0(𝑡𝑘) = 𝑑0(𝑡𝑘 − 𝜏1) + 𝑣0(𝑡𝑘 − 𝜏1) ∙ 𝜏1 + 0.5 ∙ 𝑢0(𝑡𝑘 − 𝜏1) ∙ (𝜏1)
2 (4.7b) 

where 𝑣0(𝑡𝑘) and 𝑑̂0(𝑡𝑘) are the predicted speed and predicted position of the leading vehicle 

at time instant 𝑡𝑘, respectively. Here, 𝑣0(𝑡𝑘 − 𝜏1),  𝑑0(𝑡𝑘 − 𝜏1) and 𝑢0(𝑡𝑘 − 𝜏1) are the actual 

speed, position and acceleration of the leading vehicle at 𝑡𝑘 − 𝜏1, respectively, that are detected 

through onboard sensors. The position error and relative speed of vehicle 1 from that of the 

leading vehicle 0 at time instant 𝑡𝑘 can then be predicted as: 

𝑥̂1(𝑡𝑘) = 𝑑̂0(𝑡𝑘) − 𝑑1(𝑡𝑘) − 𝑟
∗ ∙ 𝑣1(𝑡𝑘) − 𝑠𝑓 (4.8a) 

𝑦̂1(𝑡𝑘) = 𝑣1(𝑡𝑘) − 𝑣0(𝑡𝑘) (4.8b) 

where 𝑥̂1(𝑡𝑘) and 𝑦̂1(𝑡𝑘) are the predicted position error and speed difference of vehicle 1 with 

respect to the leading vehicle 0 at time 𝑡𝑘, respectively. Note that the speed and position of 

vehicle 1 at time instant 𝑡𝑘 − 𝜏1  are detected through the onboard sensors, and the 

corresponding control decision 𝑢1(𝑡), 𝑡 ∈ [𝑡𝑘 − 𝜏1, 𝑡𝑘] is known. Then, 𝑑1(𝑡𝑘) and 𝑣1(𝑡𝑘) can 

be computed as:  

𝑣1(𝑡𝑘) = 𝑣1(𝑡𝑘 − 𝜏1) + ∫ 𝑢1(𝑡)
𝑡𝑘

𝑡𝑘−𝜏1

𝑑𝑡 (4.9a) 

𝑑1(𝑡𝑘) = 𝑑1(𝑡𝑘 − 𝜏1) + ∫ 𝑣1(𝑡)
𝑡𝑘

𝑡𝑘−𝜏1

𝑑𝑡 

= 𝑑1(𝑡𝑘 − 𝜏1) + ∫ [𝑣1(𝑡𝑘 − 𝜏1) + (∫ 𝑢1(𝜍)𝑑𝜍
𝑡

𝑡𝑘−𝜏1

)]
𝑡𝑘

𝑡𝑘−𝜏1

𝑑𝑡 

(4.9b) 

Note that the predicted value 𝐳̂1(𝑡𝑘) (𝐳̂1(𝑡𝑘) = [𝑥̂1(𝑡𝑘), 𝑦̂1(𝑡𝑘)]) is different from the actual 

value 𝒛1(𝑡𝑘) due to the error in predicting the leading vehicle’s position and speed. Thereby, 

the estimated control decisions of the DMPC approach (i.e., 𝒖̂(𝑡)) are different from the 

optimal control decisions computed by the idealized MPC strategy (i.e., 𝒖∗(𝑡) ). In the 

numerical experiments, we will show that the estimated control decisions of the DMPC 

approach will deviate significantly from those of the idealized MPC strategy when the error in 

predicting 𝒛1(𝑡𝑘) is large. This will deteriorate the efficiency of the CAV platoon and can 

cause vehicular collisions. 

It should be noted that other models can also be used to predict the leading vehicle’s state. 

However, prediction error exists for all models as the leading vehicle’s behavior is unknown, 

which may impact the control performance of the DMPC approach. 

 

4.2.3 DMPC-FOA approach framework 

The DMPC approach circumvents the strong assumption of the idealized MPC strategy at the 

cost that the estimated control decisions may deviate significantly from those of the idealized 

MPC strategy due to the error in predicting 𝒛1(𝑡𝑘). To address this problem, we propose the 

DMPC-FOA approach which simultaneously addresses the control delay issue of the idealized 

MPC strategy while more accurately characterizing the optimal control decisions. 

Let 𝜏2 be the reserved time for computing the optimal control decisions for the DMPC-FOA 

approach. Also, let 𝒛̃1(𝑡𝑘) = [𝑥̃1(𝑡𝑘) 𝑦̃1(𝑡𝑘)]  be the predicted value of 𝒛1(𝑡𝑘) for the 
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DMPC-FOA approach at time instant 𝑡𝑘 − 𝜏2 by replacing  𝜏1 with 𝜏2 in Eqs. (7) and (8). 

Here, 𝑥̃1(𝑡𝑘) and 𝑦̃1(𝑡𝑘) are the predicted position error and speed difference of vehicle 1 with 

respect to the leading vehicle at time instant 𝑡𝑘, respectively. Similar to the DMPC approach, 

we assume the error in estimating 𝐳2(𝑡𝑘) is negligible as the actual states (i.e., 𝐳2(𝑡𝑘 − 𝜏2)) 
are available close to 𝑡𝑘, and prior control decisions are known.  

Denote 𝜸(𝑡) as the vector of costate variables associated with the state equations (5b). The 

costate variables indicate the change in the objective function value for a unit change in the 

corresponding state variable at the optimal state (Gaimon, 2002). The computational procedure 

for the DMPC-FOA approach is illustrated in Fig. 4.4, where 𝒛̃∗(𝑡) and 𝜸̃∗(𝑡), 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝑇𝑃] 
are the solutions for the state and costate variables obtained by solving optimal control problem 

(4.5) with initial inputs [𝒛̃1(𝑡𝑘), 𝒛2(𝑡𝑘)]). The optimal control decisions for the idealized MPC 

strategy, 𝜑( 𝒛∗(𝑡),  𝜸∗(𝑡)) (denoted as 𝒖∗(𝑡)), are analytically derived in Section 4.3 (see Eq. 

(4.23)) which discusses the solution algorithm. Then, 𝒖∗(𝑡), 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝑇𝑃]  can be 

approximated by 𝜑( 𝒛̃∗(𝑡),  𝜸̃∗(𝑡))  (denoted as 𝒖̃∗(𝑡) ). Note that the difference between 

[ 𝒛̃∗(𝑡),  𝜸̃∗(𝑡)] and [ 𝒛∗(𝑡),  𝜸∗(𝑡)] significantly impacts the accuracy of the estimated control 

decisions 𝒖̃∗(𝑡) . To reduce the difference between 𝒖̃∗(𝑡)  and 𝒖∗(𝑡), 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝑇𝑃] , 

sensitivity analysis of the optimal control problem (4.5) is performed to determine the 

derivatives of 𝜕𝒛̃∗(𝑡) 𝜕⁄ 𝒛̃1(𝑡𝑘)  (i.e., [
𝜕 𝒛̃∗(𝑡)

𝜕𝑥̃1(𝑡𝑘)
,
𝜕 𝒛̃∗(𝑡)

𝜕𝑦̃1(𝑡𝑘)
] ) and 𝜕𝜸̃∗(𝑡) 𝜕⁄ 𝒛̃1(𝑡𝑘)  (i.e., 

[
𝜕 𝜸̃∗(𝑡)

𝜕𝑥̃1(𝑡𝑘)
,
𝜕 𝜸̃∗(𝑡)

𝜕𝑦̃1(𝑡𝑘)
]). These two terms can quantitatively measure the changes in the optimal 

solutions for  𝒛̃∗(𝑡) and 𝜸̃∗(𝑡) for a unit increase in 𝒛̃1(𝑡𝑘). Thereby, at sampling time instant 

𝑡𝑘 when the actual value of 𝑥1(𝑡𝑘) and 𝑦1(𝑡𝑘) are detected through onboard sensors, the first-

order Taylor’s approximation is applied to better estimate the solutions of  𝒛∗(𝑡) and 𝜸∗(𝑡), as 

follows:  

 𝒛̅∗(𝑡) =  𝒛̃∗(𝑡) +
𝜕 𝒛̃∗(𝑡)

𝜕𝑥̃1(𝑡𝑘)
(𝑥1(𝑡𝑘) − 𝑥̃1(𝑡𝑘))

+
𝜕 𝒛̃∗(𝑡)

𝜕𝑦̃1(𝑡𝑘)
(𝑦1(𝑡𝑘) − 𝑦̃1(𝑡𝑘)), 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝑇𝑃] 

(4.10a) 

 𝜸̅∗(𝑡) =  𝜸̃∗(𝑡) +
𝜕 𝜸̃∗(𝑡)

𝜕𝑥̃1(𝑡𝑘)
(𝑥1(𝑡𝑘) − 𝑥̃1(𝑡𝑘))

+
𝜕 𝜸̃∗(𝑡)

𝜕𝑦̃1(𝑡𝑘)
(𝑦1(𝑡𝑘) − 𝑦̃1(𝑡𝑘)), 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝑇𝑃] 

(4.10b) 

where  𝒛̅∗(𝑡)  and  𝜸̅∗(𝑡)  are the values of  𝒛∗(𝑡)  and  𝜸∗(𝑡)  estimated by the DMPC-FOA 

approach, respectively. 



 

70 
 

 
Figure 4.4.  Computational procedure of the DMPC-FOA approach. 

 

When compared to [ 𝒛̃∗(𝑡),  𝜸̃∗(𝑡)], [ 𝒛̅∗(𝑡),  𝜸̅∗(𝑡)] are closer to [ 𝒛∗(𝑡),  𝜸∗(𝑡) ]. Thereby, in 

Fig. 4.4, the estimated control decisions 𝒖̅∗(𝑡) = 𝜑( 𝒛̅∗(𝑡),  𝜸̅∗(𝑡))  are closer to 𝒖∗(𝑡) 

compared to  𝒖̃∗(𝑡), 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝑇𝑃] . It is important to note here that Eq. (4.10) can be 

calculated instantaneously if the derivatives are obtained before the sampling time instant 𝑡𝑘. 

In addition, 𝜑( 𝒛̅∗(𝑡),  𝜸̅∗(𝑡)) can also be calculated instantaneously due to the closed-form 

formulation (Eq. (4.23)).  Thereby, the DMPC-FOA approach can be applied for real-time 

control of the CAV platoon with no control delay.  

As can be noted, before each sampling time instant 𝑡𝑘,  the DMPC-FOA approach needs to 

solve the optimal control problem (4.5) and conduct sensitivity analysis. Hence, the reserved 

time 𝜏2 ≥ 𝜏1. Nevertheless, we will show using numerical examples that the gap between 

𝒖̅∗(𝑡) and 𝒖∗(𝑡) is negligible even for large prediction errors of 𝒛1(𝑡𝑘) at every sampling time 

instant 𝑡𝑘.  

 

4.3 Solution algorithm for optimal control problem (4.5) 

To solve optimal control problem (4.5), a two-point boundary value problem is developed in this 

section based on the necessary conditions for optimality, the solution of which determines the 

optimal control decisions for all following CAVs. The two-point boundary value problem can be 

solved efficiently using methods such as the shooting method (Keller, 1976), method of steepest 

descent (Kirk, 2012), and iterative algorithm (Wang et al., 2014b).  

Optimal control problem (4.5) contains control constraints (Eq. (4.5d)) and pure state variable 

inequality constraints (5c). The presence of pure state variable inequality constraints increases the 

difficulty in designing an effective solution algorithm as these constraints depend on the control 

history. To address this problem, optimal control problem (4.5) is converted to an equivalent 

optimal control problem without pure state variable inequality constraints. To do so, we define a 
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new variable 𝑧𝑁 that has the following functional relationship 

𝑧̇𝑁(𝑡) =∑(𝑧𝑁,1
𝑖 + 𝑧𝑁,2

𝑖 + 𝑧𝑁,3
𝑖 )

𝑛

𝑖=1

 (4.11) 

Where 𝑧𝑁,1
𝑖 = [𝑠𝑖(𝑡) − s𝑚𝑖𝑛]

2𝐼(𝑠𝑖(𝑡) − s𝑚𝑖𝑛)  

𝑧𝑁,2
𝑖 = [𝑣𝑚𝑎𝑥 − 𝑣𝑖(𝑡)]

2𝐼(𝑣𝑚𝑎𝑥 − 𝑣𝑖(𝑡))  

𝑧𝑁,3
𝑖 = 𝑣𝑖(𝑡)𝐼(𝑣𝑖(𝑡))  

𝐼(𝑠𝑖(𝑡) − s𝑚𝑖𝑛) = {
0, 𝑖𝑓  𝑠𝑖(𝑡) − s𝑚𝑖𝑛 ≥ 0 
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           

 

𝐼(𝑣𝑚𝑎𝑥 − 𝑣𝑖(𝑡)) = {
0, 𝑖𝑓  𝑣𝑚𝑎𝑥 − 𝑣𝑖(𝑡) ≥ 0 
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           

 

𝐼(𝑣𝑖(𝑡)) = {
0, 𝑖𝑓  𝑣𝑖(𝑡) ≥ 0                
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                     

 

Proposition 1: If 𝑧𝑁(0) = 𝑧𝑁(𝑇𝑃) = 0, then 𝑠𝑖(𝑡) ≥ s𝑚𝑖𝑛 and 0 ≤ 𝑣𝑖(𝑡) ≤ 𝑣𝑚𝑎𝑥; 𝑖 = 1,2,⋯ , 𝑛 for 

𝑡 ∈ [0, 𝑇𝑃]. 

Proof: According to Eq. (4.11), 𝑧𝑁(𝑡) is a continuous function of time 𝑡 and  𝑧̇𝑁(𝑡) ≥ 0. Thereby, 

𝑧𝑁(𝑡) is a non-decreasing function of time 𝑡. Since 𝑧𝑁(0) = 𝑧𝑁(𝑇𝑃) = 0, this implies that 𝑧̇𝑁(𝑡) ≡

0 for 𝑡 ∈ [0, 𝑇𝑃] (otherwise, 𝑧𝑁(𝑇𝑃) = ∫ 𝑧̇𝑁(𝑡)
𝑇𝑃

0
𝑑𝑡 + 𝑧𝑁(0) = ∫ 𝑧̇𝑁(𝑡)

𝑇𝑃

0
𝑑𝑡 > 0). According to 

Eq. (4.11), 𝑧̇𝑁(𝑡) ≡ 0 if and only if 𝑠𝑖(𝑡) ≥ s𝑚𝑖𝑛 and 𝑣𝑖(𝑡) ≤ 𝑣𝑚𝑎𝑥; 𝑖 = 1,2,⋯ , 𝑛 for 𝑡 ∈ [0, 𝑇𝑃]. 
This completes the proof. 

According to Proposition 1, the optimal control problem (4.5) can be rewritten as the following 

equivalent problem: 

min
𝒖
∫

1

2
𝑒−𝛽𝑡[𝐳(𝑡)𝑇𝑸1𝐳(𝑡) + 𝒖(𝑡)

𝑇𝑹3𝒖(𝑡)]
𝑇𝑃

0

𝑑𝑡 +
1

2
𝑒−𝛽𝑇𝑃𝐳(𝑇𝑃)

𝑇𝑸2𝐳(𝑇𝑃) (4.12a) 

𝐳̇(𝑡) = 𝑨 ∙ 𝐳(𝑡) + 𝑩 ∙ 𝒖(𝑡) (4.12b) 

𝑧̇𝑁(𝑡) =∑(𝑧𝑁,1
𝑖 + 𝑧𝑁,2

𝑖 + 𝑧𝑁,3
𝑖 )

𝑛

𝑖=1

 (4.12c) 

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑖 ≤ 𝑢𝑚𝑎𝑥; 𝑖 = 1,2,⋯𝑛 (4.12d) 

𝐳(0) = [𝐱0
𝑇 𝐲0

𝑇]𝑇; 𝑧𝑁(0) = 𝑧𝑁(𝑇𝑃) = 0 (4.12e) 

where 𝑸1 = [
𝑹1

𝑹2
]; 𝑸2 = [

𝑹4
𝑹5
]  

To develop a two-point boundary value problem based on the necessary conditions for optimality 
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of optimal control problem (4.5), the terminal condition 𝑧𝑁(𝑇𝑃) = 0 is removed from Eq. (4.12e). 

To ensure 𝑧𝑁(𝑇𝑃) → 0, similar to the study of Naidu (2003), the term M ∙ (𝑧𝑁(𝑇𝑃))
2
 is added to the 

objective function, where M is a sufficiently large number. If 𝑧𝑁(𝑇𝑃) ≠ 0, the objective function is 

penalized. The optimal control problem (4.12) can then be re-written as: 

min
𝒖
∫

1

2
𝑒−𝛽𝑡[𝐳(𝑡)𝑇𝑸1𝐳(𝑡) + 𝒖(𝑡)

𝑇𝑹3𝒖(𝑡)]
𝑇𝑃

0

𝑑𝑡 +
1

2
𝑒−𝛽𝑇𝑃𝐳(𝑇𝑃)

𝑇𝑸2𝐳(𝑇𝑃) + M

∙ (𝑧(𝑇𝑃))
2
 

(4.13a) 

𝐳̇(𝑡) = 𝑨 ∙ 𝐳(𝑡) + 𝑩 ∙ 𝒖(𝑡) (4.13b) 

𝑧̇𝑁(𝑡) =∑(𝑧𝑁,1
𝑖 + 𝑧𝑁,2

𝑖 + 𝑧𝑁,3
𝑖 )

𝑛

𝑖=1

 (4.13c) 

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑖 ≤ 𝑢𝑚𝑎𝑥; 𝑖 = 1,2,⋯𝑛 (4.13d) 

𝐳(0) = [𝐱0
𝑇 𝐲0

𝑇]𝑇; 𝑧𝑁(0) = 0 (4.13e) 

Optimal control problem (4.13) is equivalent to problem (4.5). It contains only control constraints. 

Define the vector of functions 𝐟1(𝒛(𝑡), 𝒖(𝑡)) and the function f2(𝒛(𝑡), 𝒖(𝑡)) as follows: 

𝐳̇(𝑡) = ⌈
𝐱̇(𝑡)

𝐲̇(𝑡)
⌉ = 𝐟1(𝒛(𝑡), 𝒖(𝑡)) = 𝑨 ∙ 𝐳(𝑡) + 𝑩 ∙ 𝒖(𝑡) (4.14a) 

𝑧̇𝑁(𝑡) = f2(𝒛(𝑡), 𝒖(𝑡)) =∑(𝑧𝑁,1
𝑖 + 𝑧𝑁,2

𝑖 + 𝑧𝑁,3
𝑖 )

𝑛

𝑖=1

 (4.14b) 

Then, the Hamiltonian function for optimal control problem (4.13) is written as: 

𝑯(𝒛(𝑡), 𝝀𝐴(𝑡), 𝒖(𝑡))
= 𝑒−𝛽𝑡𝐿(𝒛(𝑡), 𝒖(𝑡)) + 𝝀(𝑡)𝑇 ∙ 𝐟1(𝒛(𝑡), 𝒖(𝑡)) + 𝜆𝑁(𝑡)

∙ f2(𝒛(𝑡), 𝒖(𝑡)). 

(4.15) 

where 𝝀(𝑡) = [𝜆1(𝑡) ⋯ 𝜆2𝑛(𝑡)]
𝑇  and 𝜆𝑁(𝑡)  are the costate variables associated with 

𝐟1(𝒛(𝑡), 𝒖(𝑡))  and f2(𝒛(𝑡), 𝒖(𝑡)) , respectively. Let 𝝀𝐴(𝑡) = [𝝀(𝑡)
𝑇 , 𝜆𝑁(𝑡)]

𝑇 , and 𝒛𝐴(𝑡) =
[𝒛(𝑡)𝑇 , 𝑧𝑁(𝑡)]

𝑇. According to Pontryagin's minimum principle, the necessary conditions for 𝒖∗(𝑡) 
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to be an optimal solution for problem (4.13) are  

𝝀𝐴̇(𝑡) = −(
𝜕𝑯

𝜕𝒛𝐴(𝑡)
) (4.16a) 

⌈
𝐳̇(𝑡)
𝑧̇𝑁(𝑡)

⌉ = [
𝐟1(𝒛(𝑡), 𝒖(𝑡))

f2(𝒛(𝑡), 𝒖(𝑡))
] (4.16b) 

with the initial conditions given in Eq. (4.13e) and the terminal conditions as: 

𝝀(𝑇𝑃) = 𝜕 (
1

2
𝑒−𝛽𝑇𝑃𝐳(𝑡)𝑇𝑸2𝐳(𝑡)) 𝜕𝐳(𝑡)⁄ |

𝑡=𝑇𝑃

 

= 𝑒−𝛽𝑇𝑃 ∙ 𝑸2 ∙ 𝐳(𝑇𝑃); 

(4.16c) 

𝜆𝑁(𝑇𝑃) = 𝜕(M ∙ 𝑧𝑁(𝑡)
2) 𝜕𝑧𝑁(𝑡)⁄ |𝑡=𝑇𝑃 

= 2 M ∙ 𝑧𝑁(𝑇𝑃). 
(4.16d) 

In addition, the optimal state trajectory 𝒛∗(𝑡), the optimal costate trajectory 𝝀𝐴
∗ (𝑡) and the optimal 

control decisions 𝒖∗(𝑡) should satisfy 

𝑯(𝒛∗(𝑡), 𝝀𝐴
∗ (𝑡), 𝒖∗(𝑡)) ≤  𝑯(𝒛∗(𝑡), 𝝀𝐴

∗ (𝑡), 𝒖(𝑡));   𝒖(𝑡), 𝒖∗(𝑡) ∈ 𝓤 (4.16e) 

where 𝓤 = {𝒖|𝑢𝑚𝑖𝑛 ≤ 𝑢𝑖 ≤ 𝑢𝑚𝑎𝑥;  𝑖 = 1,2,⋯𝑛} . To convert these necessary conditions for 

optimality into a two-point boundary value problem, we define the current-value Hamiltonian 

function as follows: 

𝑯𝒄 = 𝑒
𝛽𝑡𝑯 = 𝐿(𝒛(𝑡), 𝒖(𝑡)) + 𝜸(𝑡)𝑇𝐟1(𝒛(𝑡), 𝒖(𝑡)) + 𝛾𝑁(𝑡)f2(𝒛(𝑡), 𝒖(𝑡)).  (4.17) 

where 𝜸(𝑡) = 𝝀(𝑡)𝑒𝛽𝑡, 𝛾𝑁 = 𝜆𝑁(𝑡)𝑒
𝛽𝑡 are the costate variables for the current-value Hamiltonian 

function. Since the discount factor 𝑒−𝛽𝑡 does not depend on the control variables, the optimal 

control 𝒖∗  that minimizes the Hamiltonian function 𝑯  must also minimize the current-value 
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Hamiltonian function (Eq. (4.17)). Let 𝜸𝐴 = [𝜸(𝑡)
𝑇 , 𝛾𝑁(𝑡)]

𝑇. Then,  

𝝀̇𝐴(𝑡) = −𝛽𝑒
−𝛽𝑡𝜸𝐴(𝑡) + 𝑒

−𝛽𝑡𝜸̇𝐴(𝑡).   (4.18a) 

𝜕𝑯

𝜕𝒛𝐴(𝑡)
=

𝜕𝑯𝑐
𝜕𝒛𝐴(𝑡)

𝑒−𝛽∙𝑡 (4.18b) 

Eqs. 18(a) and 18(b) imply  

𝜸̇𝐴(𝑡) = 𝝀𝐴̇(𝑡) + 𝛽𝜸𝑨(𝑡) (4.19) 

Thereby, 

𝜸̇(𝑡) = −
𝜕𝑯𝑐
𝜕𝒛

+ 𝛽𝜸(𝑡) 

= −
𝜕 𝐟1(𝒛, 𝒖)

𝜕𝒛
𝜸(𝑡) −

𝜕f2(𝒛, 𝒖)

𝜕𝒛
𝛾𝑁(𝑡) −

𝜕 𝐿(𝒛, 𝒖)

𝜕𝒛
+ 𝛽𝜸(𝑡) 

= −𝑨 ∙ 𝜸(𝑡) − [
𝑪𝑥
𝑪𝑦
] 𝛾𝑁(𝑡) − 𝑸1𝐳(𝑡) + 𝛽𝜸(𝑡). 

(4.20a) 

𝛾̇𝑁(𝑡) − 𝛽 ∙ 𝛾𝑁(𝑡) = −𝜕𝑯𝑐 𝜕𝑧𝑁(𝑡)⁄ = 0 (4.20b) 

where  

𝑪𝑥 =
𝜕f2(𝒛(𝑡), 𝒖(𝑡))

𝜕𝐱(𝑡)
= [

2 ∙ [𝑠1(𝑡) − 𝑠𝑚𝑖𝑛] ∙ 𝐼(𝑠1(𝑡) − 𝑠𝑚𝑖𝑛)

2 ∙ [𝑠2(𝑡) − 𝑠𝑚𝑖𝑛] ∙ 𝐼(𝑠2(𝑡) − 𝑠𝑚𝑖𝑛)
⋮

2 ∙ [𝑠𝑛(𝑡) − 𝑠𝑚𝑖𝑛] ∙ 𝐼(𝑠𝑛(𝑡) − 𝑠𝑚𝑖𝑛)

]  

𝑪𝑦 =
𝜕f2(𝒛(𝑡), 𝒖(𝑡))

𝜕𝐲(𝑡)

=

[
 
 
 
 
2 ∙ [𝑣𝑚𝑎𝑥 − 𝑣1(𝑡)] ∙ 𝐼(𝑣𝑚𝑎𝑥 − 𝑣1(𝑡))

2 ∙ [𝑣𝑚𝑎𝑥 − 𝑣2(𝑡)] ∙ 𝐼(𝑣𝑚𝑎𝑥 − 𝑣2(𝑡))

⋮
2 ∙ [𝑣𝑚𝑎𝑥 − 𝑣𝑛(𝑡)] ∙ 𝐼(𝑣𝑚𝑎𝑥 − 𝑣𝑛(𝑡))]

 
 
 
 

+

[
 
 
 
 
2 ∙ 𝑣1(𝑡) ∙ 𝐼(𝑣1(𝑡))

2 ∙ 𝑣2(𝑡) ∙ 𝐼(𝑣2(𝑡))

⋮
2 ∙ 𝑣3(𝑡) ∙ 𝐼(𝑣3(𝑡))]

 
 
 
 

+

[
 
 
 
𝐶1,𝑦
𝐶2,𝑦
⋮
𝐶𝑛,𝑦]

 
 
 

 

 

𝐶𝑖,𝑦 =∑ 2 ∙ [𝑠𝑗(𝑡) − 𝑠𝑚𝑖𝑛] ∙ 𝐼(𝑠𝑗(𝑡) − 𝑠𝑚𝑖𝑛)
𝑖

𝑗=1
, ∀𝑖 = 1,2,⋯𝑛.  

The terminal conditions in Eq. (4.16c) and Eq. (4.16d) imply that 
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𝜸(𝑇𝑃) = 𝑸2 ∙ 𝐳(𝑇𝑃)
𝑇 , 𝛾𝑁(𝑇𝑃) = 𝑒

𝛽𝑇𝑃 ∙ M ∙ 2 ∙ 𝑧𝑁(𝑇𝑃) (4.21) 

Let 𝜸𝐴
∗ (𝑡) = 𝝀𝐴

∗ (𝑡)𝑒𝛽𝑡  . Since 𝑒𝛽𝑡 > 0 , according to Eq. (4.17), at time 𝑡 , minimizing 

𝑯(𝒛∗(𝑡), 𝝀𝐴
∗ (𝑡), 𝒖(𝑡))  with respect to 𝒖(𝑡)  is equivalent to minimizing 𝑯𝒄(𝒛

∗(𝑡), 𝜸𝐴
∗ (𝑡), 𝒖(𝑡)) 

with respect to 𝒖(𝑡) . This indicates that if the optimal control 𝒖∗  minimizes 

𝑯𝒄(𝒛
∗(𝑡), 𝝀𝐴

∗ (𝑡), 𝒖(𝑡)), it is the solution to inequality (4.16e). Thereby, 𝒖∗(𝑡) can be found by 

solving the following minimization problem  

𝑚𝑖𝑛𝒖(𝑡)𝑯𝒄(𝒛
∗(𝑡), 𝜸𝐴

∗ (𝑡), 𝒖(𝑡));    𝒖(𝑡), 𝒖∗(𝑡) ∈ 𝓤 (4.22) 

Proposition 2. Let [𝑝1(𝑡) 𝑝2(𝑡) ⋯ 𝑝𝑛(𝑡)]
𝑇 = −(𝑹3)

−1(𝑩𝑇𝜸∗(𝑡)) ; if 𝑹3  is a diagonal 

positive definite matrix, then the optimal control decisions 𝒖∗ = [𝑢1
∗ 𝑢2

∗ ⋯ 𝑢𝑛
∗ ]  that 

minimizes 𝑯𝒄(𝒛
∗, 𝜸𝐴

∗ , 𝒖) is unique and can be formulated as 

𝑢𝑖
∗(𝑡) = 𝜑(𝒛∗(𝑡), 𝜸∗(𝑡)) = {

𝑢𝑚𝑖𝑛, 𝑖𝑓 𝑝𝑖(𝑡) < 𝑢𝑚𝑖𝑛            
𝑢𝑚𝑎𝑥 , 𝑖𝑓 𝑝𝑖(𝑡) > 𝑢𝑚𝑎𝑥           
𝑝𝑖(𝑡), 𝑖𝑓𝑢𝑚𝑖𝑛 ≤ 𝑝𝑖(𝑡) ≤ 𝑢𝑚𝑎𝑥

 (4.23) 

Proof. If 𝒖∗ = [𝑢1
∗ 𝑢2

∗ ⋯ 𝑢𝑛
∗ ] minimizes 𝑯𝒄(𝒛

∗(𝑡), 𝜸𝐴
∗ (𝑡), 𝒖(𝑡)), then we have  

𝐿(𝒛∗(𝑡), 𝒖∗(𝑡)) + 𝜸∗(𝑡)𝐟1(𝒛
∗(𝑡), 𝒖∗(𝑡)) + 𝛾𝑁

∗ (𝑡)f2(𝒛
∗(𝑡), 𝒖∗(𝑡)) 

≤ 𝐿(𝒛∗(𝑡), 𝒖(𝑡)) + 𝜸∗(𝑡)𝐟1(𝒛
∗(𝑡), 𝒖(𝑡)) + 𝛾𝑁

∗ (𝑡)f2(𝒛
∗(𝑡), 𝒖(𝑡)) 

(4.24) 

Eq. (4.24) indicates 

0.5 ∙ 𝒖∗(𝑡)𝑇𝑹3𝒖
∗(𝑡) + (𝜸∗(𝑡))

𝑇
∙ 𝑩 ∙ 𝒖∗(𝑡) 

≤ 0.5 ∙ 𝒖(𝑡)𝑇𝑹3𝒖(𝑡) + (𝜸
∗(𝑡))

𝑇
∙ 𝑩 ∙ 𝒖(𝑡) 

(4.25) 

Let 𝒑∗(𝑡) = (𝑹3)
−1(𝑩𝑇𝜸∗(𝑡)) = −[𝑝1 𝑝2 ⋯ 𝑝𝑛]𝑇. Then 

(𝜸∗(𝑡))
𝑇
∙ 𝑩 ∙ 𝒖∗(𝑡) = (𝒖∗(𝑡))

𝑇
𝑩𝑇𝜸∗(𝑡) = (𝒖∗(𝑡))

𝑇
𝑹3𝒑

∗(𝑡) (4.26a) 

(𝜸∗(𝑡))
𝑇
∙ 𝑩 ∙ 𝒖(𝑡) = (𝒖(𝑡))𝑇𝑩𝑇𝜸∗(𝑡) = (𝒖(𝑡))

𝑇
𝑹3𝒑

∗(𝑡) (4.26b) 

Substituting Eq. (4.26) into Eq. (4.25), we have  

0.5 ∙ 𝒖∗(𝑡)𝑇𝑹3𝒖
∗(𝑡) + (𝒖∗(𝑡))

𝑇
𝑹3𝒑

∗(𝑡) 

≤ 0.5 ∙ 𝒖(𝑡)𝑇𝑹3𝒖(𝑡) + (𝒖(𝑡))
𝑇𝑹3𝒑

∗(𝑡) 
(4.27) 

Adding 0.5 ∙ 𝒑∗(𝑡)𝑇𝑹3𝒑
∗(𝑡) = 0.5(𝜸∗(𝑡))

𝑇
∙ 𝑩(𝑹3)

−1𝑩𝑇𝜸∗(𝑡) to both sides of inequality (4.27), 

we have  

0.5[𝒖∗(𝑡) + 𝒑∗(𝑡)]𝑇𝑹3[𝒖
∗(𝑡) + 𝒑∗(𝑡)] ≤ 0.5[𝒖(𝑡) + 𝒑∗(𝑡)]𝑇𝑹3[𝒖(𝑡) + 𝒑

∗(𝑡)] (4.28) 

Inequality (4.28) implies that if 𝒖∗ minimizes 𝑯𝒄(𝒛
∗(𝑡), 𝜸𝐴

∗ (𝑡), 𝒖(𝑡)), it must minimize inequality 
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(4.27) and vice versa. Thereby  

𝒖∗(𝑡) = 𝑚𝑖𝑛𝒖∈𝓤[𝒖(𝑡) + 𝒑
∗(𝑡)]𝑇𝑹3[𝒖(𝑡) + 𝒑

∗(𝑡)] (4.29) 

Note 𝑹3  is a diagonal positive definite matrix; without loss of generosity, let 𝑹3 =
𝑑𝑖𝑎𝑔([𝓌1,𝓌2⋯ ,𝓌𝑛]), 𝓌𝑖 > 0, ∀𝑖 = 1,2,⋯ , 𝑛. Then, inequality (4.29) can be written as  

𝒖∗(𝑡) = 𝑚𝑖𝑛𝒖∈𝓤∑𝓌𝑖[𝑢𝑖(𝑡) − 𝑝𝑖]
2

𝑛

𝑖=1

 

=∑ 𝑚𝑖𝑛𝑢𝑚𝑖𝑛≤𝑢𝑖≤𝑢𝑚𝑎𝑥𝓌𝑖[𝑢𝑖(𝑡) − 𝑝𝑖]
2

𝑛

𝑖=1
 

(4.30) 

The only solution to the above inequality is  

𝑢𝑖
∗(𝑡) = {

𝑢𝑚𝑖𝑛, 𝑖𝑓 𝑝𝑖(𝑡) < 𝑢𝑚𝑖𝑛            
𝑢𝑚𝑎𝑥, 𝑖𝑓 𝑝𝑖(𝑡) > 𝑢𝑚𝑎𝑥           
𝑝𝑖(𝑡), 𝑖𝑓𝑢𝑚𝑖𝑛 ≤ 𝑝𝑖(𝑡) ≤ 𝑢𝑚𝑎𝑥

; ∀𝑖 = 1,2,⋯ , 𝑛 (4.31) 

This completes the proof. ∎ 

Eq. (4.13b), Eq. (4.13c), Eq. (4.20a), Eq. (4.20b) and Eq. (4.23) form a two-point boundary value 

problem as follows with initial conditions and terminal conditions provided by Eq.(12e) and Eq. 

(4.21), respectively.  

𝐳̇(𝑡) = 𝑨 ∙ 𝐳(𝑡) + 𝑩 ∙ 𝜑(𝒛(𝑡), 𝜸(𝑡)) (4.32a) 

𝑧̇𝑁(𝑡) =∑(𝑧𝑁,1
𝑖 + 𝑧,2

𝑖 + 𝑧𝑁,3
𝑖 )

𝑛

𝑖=1

 (4.32b) 

𝜸̇(𝑡) = −𝑨 ∙ 𝜸(𝑡) − [
𝑪𝑥
𝑪𝑦
] 𝛾𝑁(𝑡) − 𝑸1𝐳(𝑡) + 𝛽𝜸(𝑡) (4.32c) 

𝛾̇𝑁(𝑡) = 𝛽 ∙ 𝛾𝑁(𝑡) (4.32d) 

𝐳(0) = [𝐱0
𝑇 𝐲0

𝑇]𝑇; 𝑧𝑁(0) = 0; (4.32e) 

𝜸(𝑇𝑃) = 𝑸2𝐳(𝑇𝑃), 𝛾𝑁(𝑇𝑃) = 𝑒
𝛽𝑇𝑃 ∙ M ∙ 2 ∙ 𝑧𝑁(𝑇𝑃) (4.32f) 

The two-point boundary value problem can be solved using many existing solution algorithms. A 

review of these algorithms is provided in Kirk (2012). In this study, the shooting method is used to 

solve the two-point boundary value problem (4.32). The details of implementing the shooting 

method can be found in Keller (1976). The main advantage of the shooting method is that it 

converges very fast if the algorithm starts to converge (Keller, 1976). Note, 𝜕2𝑯𝒄 𝜕(𝒖(𝑡))
2⁄ = 𝑹3 

is a positive definite matrix. Thereby, the solution (𝒛∗(𝑡), 𝑧𝑁
∗ (𝑡), 𝜸∗(𝑡), 𝛾𝑁

∗ (𝑡)) of the two-point 

boundary value problem (4.32) is a minimum solution of optimal control problem (4.5). The 
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optimal control 𝒖∗(𝑡) can be obtained by inputting 𝜸∗(𝑡) into Eq. (4.23). 

4.4 Sensitivity analysis of the optimal control problem 

For the DMPC approach, at each sampling time instant 𝑡𝑘, the control decisions are determined by 

solving the two-point boundary value problem (4.32) with the predicted spacing error and relative 

speed of vehicle 1 with respect to the leading vehicle (i.e., 𝑥̂1(𝑡𝑘) and 𝑦̂1(𝑡𝑘)). The resulting control 

decisions may deviate significantly from those of the idealized MPC strategy due to errors in 

predicting f 𝑥1(𝑡𝑘) and 𝑦1(𝑡𝑘), which can decrease the platoon performance and cause collisions. 

To address this issue, the DMPC-FOA approach corrects the estimated control decisions of the 

DMPC approach using first-order Taylor approximation. To do so, the main step is to obtain the 

derivatives of the optimal solution of the state and costate variables with respect to 𝑥̃1(𝑡𝑘) and 

𝑦̃1(𝑡𝑘) in the DMPC-FOA approach, respectively. 

The sensitivity analysis of an optimal control problem quantitatively measures the change in the 

optimal solution of the state and costate variables induced by a unit change in the perturbed 

parameters (i.e., 𝑥̃1(𝑡𝑘) and 𝑦̃1(𝑡𝑘) in this study). Parametric sensitivity of optimal problem has 

been extensively studied. Dorato (1963) developed an analytical model to study the variation of the 

objective function with respect to parametric perturbations. Malanowski (1984, 1987) discussed 

the conditions for directional differentiability of the solutions for an optimal control problem with 

nonlinear ordinary dynamics. Maurer and Pesch (1984) developed an analytical method for 

sensitivity analysis of optimal control problems with no constraints. This method is further 

extended to study the sensitivity analysis of optimal control problems with control constraints 

(Maurer and Pesch, 1995; Malanowski and Maurer, 1996), and pure state variable constraints 

(Augustin and Maurer, 2001; Malanowski, 2011). Here, the analytical method for sensitivity 

analysis of the optimal control decisions with respect to 𝑥̃1(𝑡𝑘) and 𝑦̃1(𝑡𝑘) will be derived by 

modifying the method developed by Maurer and Pesch (1995) for a general optimal control 

problem.  

Denote 𝒖̃∗(𝑡) = [𝑢̃1
∗(𝑡),⋯ , 𝑢̃𝑛

∗ (𝑡)] as the control decisions obtained by solving Eq. (4.32) using 

𝑥̃1(𝑡𝑘) and 𝑦̃1(𝑡𝑘) predicted by the DMPC-FOA approach. The corresponding solutions for the 

state variables (i.e., 𝐳(𝑡), 𝑧𝑁(𝑡)) and costate variables (i.e., 𝜸(𝑡), 𝛾(𝑡)) are denoted as 𝐳̃∗(𝑡), 
𝑧̃𝑁
∗ (𝑡), 𝜸̃∗(𝑡) and 𝛾̃𝑁

∗ (𝑡), respectively. Let the derivatives of the optimal solutions for the state and 

costate variables with respect to 𝑥̃1(𝑡𝑘) be defined as follows: 

 𝐡𝑥̃1(𝑡) =
𝜕𝐳̃∗(𝑡)

𝜕𝑥̃1(𝑡𝑘)
;  ℎ𝑁,𝑥̃1(𝑡) =

𝜕𝑧̃𝑁
∗ (𝑡)

𝜕𝑥̃1(𝑡𝑘)
  

 𝛈𝑥̃1(𝑡) =
𝜕𝜸̃∗(𝑡)

𝜕𝑥̃1(𝑡𝑘)
;  𝜂𝑁,𝑥̃1(𝑡) =

𝜕𝛾̃𝑁
∗ (𝑡)

𝜕𝑥̃1(𝑡𝑘)
.  

According to 𝑢̃𝑖
∗(𝑡), we can obtain the set of time intervals Ω𝑖,1, Ω𝑖,2, and Ω𝑖,2 (Ω𝑖,1 ∪ Ω𝑖,2 ∪ Ω𝑖,2 =
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[0, 𝑇𝑃]) for each vehicle 𝑖, 𝑖 = 1,2,⋯ , 𝑛 such that 

𝑢̃𝑖
∗(𝑡) = {

𝑢𝑚𝑖𝑛, 𝑡 ∈ Ω𝑖,1       

𝑢𝑚𝑎𝑥 , 𝑡 ∈ Ω𝑖,2      

𝑝𝑖, 𝑡 ∈ Ω𝑖,3

 (4.33) 

where [𝑝1(𝑡) 𝑝2(𝑡) ⋯ 𝑝𝑛(𝑡)] = −(𝑹3)
−1(𝑩𝑇𝜸̃∗(𝑡)).  

Then, according to Eq. (4.33), we have   

𝑑𝑢̃𝑖
∗(𝑡)

𝑑𝑥̃1(𝑡𝑘)
= {

0, 𝑡 ∈ (Ω𝑖,1 ∪ Ω𝑖,2)  

𝑚𝑥̃1,𝑖(𝑡), 𝑡 ∈ Ω𝑖,3         
 (4.34a) 

where  

[𝑚𝑥̃1,1(𝑡) 𝑚𝑥̃1,2(𝑡) ⋯ 𝑚𝑥̃1,𝑛(𝑡)]
𝑇 = −(𝑹3)

−1 (𝑩𝑇 𝛈𝑥̃1(𝑡)). (4.34b) 

Let Ψ( 𝛈𝑥̃1(𝑡)) = [
𝑑𝑢1

∗ (𝑡)

𝑑𝑥̃1(𝑡𝑘)

𝑑𝑢2
∗ (𝑡)

𝑑𝑥̃1(𝑡𝑘)
⋯

𝑑𝑢𝑛
∗ (𝑡)

𝑑𝑥̃1(𝑡𝑘)
]
𝑇

. Differentiating both sides of Eqs. (32a)-(32g) 

with respect to 𝑥̃1(𝑡𝑘), we have  

𝐡̇𝑥̃1(𝑡) = 𝑨 ∙ 𝐡𝑥̃1 + 𝑩 ∙ Ψ( 𝛈𝑥̃1(𝑡)) (4.35a) 

ℎ̇𝑁,𝑥̃1 = [𝑪𝑥
𝑇 𝑪𝑦

𝑇] ∙ 𝐡𝑥̃1 (4.35b) 

𝛈̇𝑥̃1 = −𝑨 ∙ 𝛈𝑥̃1(𝑡) − [
𝑪𝑥
𝑪𝑦
] 𝜂𝑁,𝑥̃1(𝑡) − 𝑸1𝐡𝑥̃1 + 𝛽𝛈𝑥̃1(𝑡) (4.35c) 

𝜂̇𝑁,𝑥̃1(𝑡) = 𝛽 ∙ 𝜂𝑁,𝑥̃1(𝑡) (4.35d) 

with initial and terminal conditions as: 

𝐡𝑥̃1(0) =
𝜕𝐳̃(0)

𝜕𝑥̃1(𝑡𝑘)
=
𝜕𝐳̃(𝑡𝑘)

𝜕𝑥̃1(𝑡𝑘)
= [1, 𝟎1×2𝑛−1]

𝑇 (4.35e) 

ℎ𝑁,𝑥̃1(0) =
𝜕𝑧̃𝑁(0)

𝜕𝑥̃1(𝑡𝑘)
=

𝜕(0)

𝜕𝑥̃1(𝑡𝑘)
= 0 (4.35f) 

𝛈𝑥̃1(𝑇𝑃) =
𝜕𝜸̃1(𝑇𝑃)

𝜕𝑥̃1(𝑡𝑘)
=
𝜕(𝑸2𝐳̃(𝑇𝑃))

𝜕𝑥̃1(𝑡𝑘)
= 𝑸2 ∙ 𝐡𝑥̃1(𝑇𝑃) (4.35g) 

𝜂𝑁,𝑥̃1(𝑇𝑃) =
𝜕𝛾̃𝑁(𝑇𝑃)

𝜕𝑥̃1(𝑡𝑘)
=
𝜕(𝑒𝛽𝑇𝑃 ∙ M ∙ 2 ∙ 𝑧̃𝑁(𝑇𝑃))

𝜕𝑥̃1(𝑡𝑘)
= 𝑒𝛽𝑇𝑃 ∙ M ∙ 2 ∙ ℎ𝑁,𝑥̃1(𝑇𝑃) (4.35h) 

where 𝟎1×2𝑛−1 is a (2𝑛 − 1)-dimensional zero vector. Eqs. (4.35a)-(4.35h) also form a two-point 

boundary value problem which can be solved using the shooting method.  

To obtain the derivatives of the optimal state and costate variables with respect to 𝑦̃1(𝑡𝑘), similarly, 



 

79 
 

let 

𝐡𝑦̃1(𝑡) =
𝜕𝐳̃∗(𝑡)

𝑑𝑦̃1(𝑡𝑘)
;   ℎ𝑁,𝑦̃1(𝑡) =

𝜕𝑧̃𝑁
∗ (𝑡)

𝑑𝑦̃1(𝑡𝑘)
 (4.36a) 

𝛈𝑦̃1(𝑡) =
𝜕𝜸̃∗(𝑡)

𝜕𝑦̃1(𝑡𝑘)
; 𝜂𝑁,𝑦̃1(𝑡) =

𝜕𝛾̃𝑁
∗ (𝑡)

𝜕𝑦̃1(𝑡𝑘)
. (4.36b) 

Differentiating both sides of Eqs. (4.32a)-(4.32f) with respect to 𝑦̃1(𝑡𝑘), we can obtain a similar 

two-point boundary value problem, as follows: 

𝐡̇𝑦̃1(𝑡) = 𝑨 ∙ 𝐡𝑦̃1 + 𝑩 ∙ Ψ( 𝛈𝑦̃1(𝑡)) (4.37a) 

ℎ̇𝑁,𝑦̃1 = [𝑪𝑥
𝑇 𝑪𝑦

𝑇]𝐡𝑦̃1 (4.37b) 

𝛈̇𝑦̃1 = −𝑨 ∙ 𝛈𝑦̃1(𝑡) − [
𝑪𝑥
𝑪𝑦
] 𝜂𝑁,𝑦̃1(𝑡) − 𝑸1𝐡𝑦̃1 + 𝛽𝛈𝑦̃1(𝑡) (4.37c) 

𝜂̇𝑁,𝑦̃1(𝑡) = 𝛽 ∙ 𝜂𝑁,𝑦̃1(𝑡) (4.37d) 

with initial and terminal conditions as: 

𝐡𝑦̃1(0) =
𝜕𝐳̃(0)

𝜕𝑦̃1(𝑡𝑘)
=
𝜕𝐳̃(𝑡𝑘)

𝜕𝑦̃1(𝑡𝑘)
= [𝟎1×𝑛, 1, 𝟎1×𝑛−1]

𝑇 (4.37e) 

ℎ𝑁,𝑦̃1(0) =
𝜕𝑧̃𝑁(0)

𝜕𝑦̃1(𝑡𝑘)
=

𝜕(0)

𝜕𝑦̃1(𝑡𝑘)
= 0 (4.37f) 

𝛈𝑦̃1(𝑇𝑃) =
𝜕𝜸̃1(𝑇𝑃)

𝜕𝑦̃1(𝑡𝑘)
=
𝑑(𝑸2𝐳̃(𝑇𝑃))

𝜕𝑦̃1(𝑡𝑘)
= 𝑸2 ∙ 𝐡𝑦̃1(𝑇𝑃) (4.37g) 

𝜂𝑁,𝑦̃1(𝑇𝑃) =
𝜕𝛾̃𝑁(𝑇𝑃)

𝜕𝑦̃1(𝑡𝑘)
=
𝜕(𝑒𝛽𝑇𝑃 ∙ M ∙ 2 ∙ 𝑧̃𝑁(𝑇𝑃))

𝜕𝑦̃1(𝑡𝑘)
= 𝑒𝛽𝑇𝑃 ∙ M ∙ 2 ∙ ℎ𝑁,𝑦̃1(𝑇𝑃) (4.37h) 

where 𝟎1×𝑛−1 is a (𝑛 − 1)-dimensional zero vector. The vector of functions Ψ( 𝛈𝑦̃1(𝑡)) is similar 

to Ψ( 𝛈𝑥̃1(𝑡)). It is formulated by replacing the subscript “𝑥̃1” in Eq. (4.34) with “𝑦̃1”.  

The derivatives of the optimal solutions for the state and costate variables with respect to 𝑥̃1(𝑡𝑘) 
and 𝑦̃1(𝑡𝑘) can be obtained by solving the two-point boundary value problems (4.35) and (4.37), 

respectively. Then, when the actual value of 𝑥1(𝑡𝑘) and 𝑦1(𝑡𝑘) are detected at the sampling time 

instant 𝑡𝑘, the optimal solution of the state and costate variables of the idealized MPC strategy can 

be estimated using first-order Taylor approximation, as follows 

𝒛̅∗(𝑡) = 𝒛̃∗(𝑡) + 𝐡𝑥̃1(𝑡)(𝑥1(𝑡𝑘) − 𝑥̃1(𝑡𝑘)) + 𝐡𝑦̃1(𝑡)(𝑦1(𝑡𝑘) − 𝑦̃1(𝑡𝑘)) (4.38a) 

𝜸̅∗(𝑡) = 𝜸̃∗(𝑡) + 𝛈𝑥̃1(𝑡)(𝑥1(𝑡𝑘) − 𝑥̃1(𝑡𝑘)) + 𝛈𝑦̃1(𝑡)(𝑦1(𝑡𝑘) − 𝑦̃1(𝑡𝑘)) (4.38b) 

Eq. (4.38a) and Eq. (4.38b) can be calculated instantaneously at the sampling time instant 𝑡𝑘 as 
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𝐡𝑥̃1(𝑡), 𝐡𝑦̃1(𝑡), 𝛈𝑥̃1(𝑡) and 𝛈𝑦̃1(𝑡) are obtained before 𝑡𝑘 . Eq. (4.38) indicates that compared to 

[𝒛̃∗(𝑡), 𝜸̃∗(𝑡)], [𝒛̅∗(𝑡), 𝜸̅∗(𝑡)] are closer to [𝒛∗(𝑡), 𝜸∗(𝑡)] calculated for the idealized MPC strategy 

using exact 𝑥1(𝑡𝑘)  and 𝑦1(𝑡𝑘) . According to Eq. (4.23), the optimal control decisions of the 

idealized MPC strategy can be estimated as 

𝑢̅𝑖
∗(𝑡) = 𝜑(𝒛̅∗(𝑡), 𝜸̅∗(𝑡)) = {

𝑢𝑚𝑖𝑛, 𝑖𝑓 𝑝̅𝑖(𝑡) < 𝑢𝑚𝑖𝑛            
𝑢𝑚𝑎𝑥 , 𝑖𝑓 𝑝̅𝑖(𝑡) > 𝑢𝑚𝑎𝑥           
𝑝̅𝑖(𝑡), 𝑖𝑓𝑢𝑚𝑖𝑛 ≤ 𝑝̅𝑖(𝑡) ≤ 𝑢𝑚𝑎𝑥

; ∀𝑖 = 1,2,⋯ , 𝑛 (4.39) 

where [𝑝̅1(𝑡) 𝑝̅2(𝑡) ⋯ 𝑝̅𝑛(𝑡)]
𝑇 = −(𝑹3)

−1(𝑩𝑇𝜸̅∗(𝑡)) . Compared to 𝒖̃∗(𝑡) , the estimated 

𝒖̅∗(𝑡), (𝒖̅∗(𝑡) = [𝑢̅1
∗(𝑡) 𝑢̅2

∗(𝑡) ⋯ 𝑢̅𝑛
∗ (𝑡)]𝑇) is closer to 𝒖∗(𝑡) calculated using the idealized 

MPC strategy as 𝜸̅∗(𝑡) is closer to 𝜸∗(𝑡) compared to 𝜸̃∗(𝑡). 

Proposition 3: If the inequality constraints (4.5c), (4.5d) and (4.5e)  are not active along the 

trajectory of the optimal solution (𝒛̃∗(𝑡), 𝑧̃∗(𝑡), 𝜸̃∗(𝑡), 𝛾̃∗(𝑡)) obtained with the predicted initial 

state 𝑥̃1(𝑡𝑘) and 𝑦̃1(𝑡𝑘), then the derivatives of optimal solutions for the state and costate variables 

with respect to 𝑥̃1(𝑡𝑘) and 𝑦̃1(𝑡𝑘) are the same for all solutions of (𝒛̃∗(𝑡), 𝑧̃∗(𝑡), 𝜸̃∗(𝑡), 𝛾̃∗(𝑡)) for 

which the inequality constraints (5c) and (5d) are not active. 

Proof: If the inequality constraints (4.5c), (4.5d) and (4.5e) are not active along the optimal 

solution,𝑧̃𝑁
∗ (𝑡) ≡ 0, 𝑡 ∈ [0, 𝑇𝑃]. According to Eq. (4.16d), 𝛾̃𝑁

∗ (𝑇𝑃) = 2 M ∙ 𝑧̃𝑁
∗ (𝑇𝑃) = 2 M ∙ 0 = 0. 

Based on Eq. (4.32e),  𝛾̃𝑁
∗ (𝑡) ≡ 0, 𝑡 ∈ [0, 𝑇𝑃] . This indicates that 𝜂𝑁,𝑥̃1(𝑡) = 𝜂𝑁,𝑦̃1(𝑡) ≡ 0, 𝑡 ∈

[0, 𝑇𝑃] .  In addition, Ψ( 𝛈𝑥̃1(𝑡)) = −(𝑹3)
−1(𝑩𝑇 𝛈𝑥̃1(𝑡))   and Ψ( 𝛈𝑦̃1(𝑡)) =

−(𝑹3)
−1 (𝑩𝑇 𝛈𝑦̃1(𝑡)). Thereby, the two-point boundary value problems (4.35) and (4.37) are the 

same for different optimal solutions under which the inequality constraints (4.5c), (4.5d) and (4.5e) 

are not active. This indicates that the derivatives of the optimal solutions for the state and costate 

variables with respect to 𝑥̃1(𝑡𝑘) and 𝑦̃1(𝑡𝑘) are the same for all of these solutions. ∎ 

Proposition 3 implies that if under the optimal control decisions, the following vehicles in the 

platoon do not brake and accelerate at the maximum values, the speed is within the speed limit, and 

the spacing between all adjacent vehicle pairs is larger than the minimum spacing during time 

interval [𝑡𝑘, 𝑡𝑘 + 𝑇𝑃], the changes in the optimal control decisions for a unit change in 𝑥̃1(𝑡𝑘) and 

𝑦̃1(𝑡𝑘) would be the same for all of these optimal control decisions. It is worth noting that the 

idealized MPC strategy can coordinate the behaviors of all following vehicles to minimize the 

objective function efficiently. It can enable smoother deceleration and acceleration behavior of all 

following vehicles even if the leading vehicle decelerates or accelerates at the maximum value. The 

following vehicles accelerate or decelerate at the maximum value only when the spacing between 

two consecutive vehicles is too large or too small. Thereby, according to Proposition 3, under 

normal conditions, the derivatives of the optimal solutions for the state and costate variables, i.e., 
(𝒛̃(𝑡), 𝑧̃𝑁(𝑡), 𝜸̃(𝑡), 𝛾̃𝑁(𝑡)) with respect to 𝑥̃1(𝑡𝑘) and 𝑦̃1(𝑡𝑘) are the same and are independent of 

these solutions. Let 𝐡𝑙
∗(𝑡), ℎ𝑁,𝑙

∗ (𝑡), 𝛈𝑙
∗(𝑡), 𝜂𝑁,𝑙

∗ (𝑡), 𝑙 ∈ {𝑥̃1, 𝑦̃1}, 𝑡 ∈ [0, 𝑇𝑃]  be the corresponding 

derivatives. These derivatives can be obtained offline to avoid solving the two-point boundary value 

problems (4.35) and (4.37) in real time. Thereby, under normal situations when the inequality 

constraints (4.5c), (4.5d) and (4.5e) are not active along the optimal solution, the time reserved for 
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computing in DMPC-FOA approach can be the same as that of the DMPC approach.  

Further, when the inequality constraints are active frequently for some traffic flow conditions (e.g., 

very congested flow), the two-point boundary value problems (4.35) and (4.37) need to be solved 

in real time.  𝐡𝑙
∗(𝑡), ℎ𝑁,𝑙

∗ (𝑡), 𝛈𝑙
∗(𝑡), 𝜂𝑁,𝑙

∗ (𝑡), 𝑙 ∈ {𝑥̃1, 𝑦̃1}, 𝑡 ∈ [0, 𝑇𝑃] can be used as the initial point 

for the shooting method to solve the two-point boundary value problems. This can significantly 

reduce the computational time for solving the two problems as they are closer to the optimal 

solution. This property enhances the applicability of the proposed DMPC-FOA approach for 

controlling the CAV platoon in real-time. 

 

4.5 Stability analysis of the idealized MPC strategy with no inequality constraints 

Stability is an important property for a CAV platoon. It indicates the capability of a platoon to 

recover to a stable state after external disturbances on the platoon formation (e.g., unexpected 

hard acceleration and deceleration of the leading vehicle). In this study, the condition for 

asymptotic stability of the idealized MPC strategy is analyzed to ensure that the CAV platoon 

can dampen traffic oscillations efficiently. This condition also ensures the local stability of the 

DMPC-FOA approaches as it is proposed to characterize the control decisions of the idealized 

MPC strategy. Similar to Gong et al., (2016), the stability analysis of the idealized MPC 

strategy is based on optimal control problem (4.5) with no inequality constraints as they are 

not active in most traffic flow scenarios. The conditions for asymptotic stability of the idealized 

MPC strategy with active constraints will be investigated in our future work.  

For convenience of stability analysis, in the following, optimal control problem (4.5) without 

inequality constraints (4.5c) and (4.5d) is transformed into an equivalent form for analyzing 

stability. The conditions for asymptotic stability of the unconstrained idealized MPC strategy 

are analyzed using the stability theorem for continuous MPC problems developed by Mayne 

et.al. (2000). Let  

𝒛𝛽(𝑡) = 𝑒
−
𝛽
2
𝑡𝒛(𝑡) (4.40a) 

𝒖𝛽(𝑡) = 𝑒
−
𝛽
2
𝑡𝒖(𝑡) (4.40b) 

Then, optimal control problem (4.5) without inequality constraints (4.5c) and (4.5d) can be 

formulated as  

𝑚𝑖𝑛
𝒖𝛽

∫ [𝒛𝛽(𝑡)
𝑇𝑸1𝒛𝛽(𝑡) + 𝒖𝛽(𝑡)

𝑇𝑹3𝒖𝛽(𝑡)]
𝑇𝑃

0

𝑑𝑡 + 𝒛𝛽(𝑇𝑃)
𝑇𝑸2𝒛𝛽(𝑇𝑃) (4.41a) 

s.t 𝒛̇𝛽(𝑡) = (𝑨 −
𝛽

2
𝑬2𝑛) 𝒛𝛽(𝑡) + 𝑩𝒖𝛽(𝑡) (4.41b) 

𝒛𝛽(0) = [𝐱𝑘 𝐲𝑘]𝑇 (4.41c) 

The following theorem is used to analyze the asymptotical stability of the idealized MPC 

strategy with no inequality constraints. 

Theorem 1 (Mayne et.al. 2000): Consider the following continuous constrained MPC problem 
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𝑚𝑖𝑛
𝒂
∫ 𝐿(𝔃(𝑡),𝓾(𝑡))
𝑇𝑃

0

𝑑𝑡 + 𝐹(𝔃(𝑇𝑃)) 

s.t 𝔃̇ = 𝑔(𝔃,𝓾) 

 𝔃(𝑡) ∈ 𝒵,   for 𝑡𝜖[0, 𝑇𝑃] 

 𝓾(𝑡) ∈ 𝒜,   for 𝑡𝜖[0, 𝑇𝑃] 

 𝔃(𝑇𝑃) ∈ 𝒵𝑓 

where 𝔃 and 𝓾 are vectors of the state variables and control variables, respectively. 𝔃(𝑇𝑃) is 

the value of 𝔃(𝑡) at terminal time 𝑇𝑃.  𝒵, 𝒜, and 𝒵𝑓 are the feasible sets for 𝔃(𝑡), 𝓾(𝑡) and 

𝔃(𝑇𝑃), respectively. If there exists a nominal controller 𝜅(𝔃) such that the following four 

conditions hold for the above continuous MPC problem, then it is asymptotic stable. 

(1).  0 ∈ 𝒵 

(2).  𝜅(𝔃) ∈ 𝒜, ∀𝔃 ∈ 𝒵𝑓 

(3).  𝑔(𝔃, 𝜅(𝔃)) ∈ 𝒵𝑓 for ∀𝔃 ∈ 𝒵𝑓 

(4).  [𝐹̇ + 𝐿](𝔃, 𝜅(𝔃)) ≤ 0 for ∀𝔃 ∈ 𝒵𝑓 

To enable application of Theorem 1 for stability analysis of the unconstrained idealized MPC 

strategy based on optimal control problem (4.41), let 

𝔃(𝑡) = 𝒛𝛽(𝑡) (4.42a) 

𝓾(𝑡) = 𝒖𝛽(𝑡) (4.42b) 

𝔃̇(𝑡) = 𝑔(𝔃,𝓾) = (𝑨 −
𝛽

2
𝑬2𝑛) 𝔃(𝒕) + 𝑩𝓾(𝑡) (4.42c) 

𝐿(𝔃(𝑡), 𝓾(𝑡)) = 𝔃(𝒕)𝑇𝑸1𝔃(𝒕) + 𝓾(𝑡)
𝑇𝑹3(𝑡) (4.42d) 

𝐹(𝔃(𝑡)) = 𝔃(𝑡)𝑇𝑸2𝔃(𝑡) (4.42e) 

𝐹̇(𝔃(𝑡)) = 𝔃̇(𝑡)𝑇𝑸2𝔃(𝑡) + 𝔃(𝑡)
𝑇𝑸2𝔃̇(𝑡) (4.42f) 

This study chooses a linear nominal controller (Camacho and Alba, 2013) as follows 

𝜅(𝔃) = 𝓚𝔃 (4.43) 

Let 𝓚 = 𝟎2𝑛×𝑛 . This choice of matrix 𝓚  will simplify the analysis of conditions for 

asymptotic stability of the unconstrained idealized MPC strategy based on optimal control 

problem (4.41). Next, we illustrate the conditions for which optimal control problem (4.41) 

can satisfy the four conditions in Theorem 1.  

For optimal control problem (4.41), the feasible set of state variables, control variables, and 

terminal state variables are 𝒵 = ℝ2𝑛, 𝒜 = ℝ𝑛, and 𝒵𝑓 = ℝ
2𝑛, respectively. Thereby, 0 ∈ 𝒵; 

condition 1 is satisfied. According to Eq. (4.43), 𝜅(𝔃) = 𝓚𝔃 = 𝟎1×𝑛 ∈ ℝ
𝑛 = 𝒜.  Hence, 

condition 2 in Theorem 1 is also satisfied. From Eq. (4.42c) and Eq. (4.43), 𝑔(𝔃, 𝜅(𝔃)) =

(𝑨 −
𝛽

2
𝑬2𝑛)𝔃(𝑡) + 𝑩𝓚𝔃(𝑡) = (𝑨 −

𝛽

2
𝑬2𝑛)𝔃(𝑡) ∈ ℝ

2𝑛 = 𝒵𝑓. Therefore, condition 3 holds 

for optimal control problem (4.41).  
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To illustrate that condition 4 is satisfied, for simplicity, the notation for time 𝑡 is removed. 

Substituting Eqs. (42c)-(42f) into the inequality in condition 4, we have 

[(𝑨 −
𝛽

2
𝑬2𝑛) 𝔃 + 𝑩𝓚𝔃]

𝑇

𝑸2𝔃 + 𝔃
𝑇𝑸2 [(𝑨 −

𝛽

2
𝑬2𝑛) 𝔃 + 𝑩𝓚𝔃]

+ 𝔃𝑇𝑸1𝔃 + (𝓚𝔃)
𝑇𝑹3(𝓚𝔃) ≤ 0 

(4.44) 

Note 𝓚 = 𝟎2𝑛×𝑛; hence, inequality (4.44) can be simplified as  

𝔃𝑇 [(𝑨 −
𝛽

2
𝑬2𝑛)

𝑇

𝑸2 + 𝑸2 (𝑨 −
𝛽

2
𝑬2𝑛) + 𝑸1] 𝔃 ≤ 0 (4.45) 

Let 𝑾 = (𝑨 −
𝛽

2
𝑬2𝑛)

𝑇

𝑸2 + 𝑸2 (𝑨 −
𝛽

2
𝑬2𝑛) + 𝑸1 . Obviously, inequality (4.45) holds if 

matrix 𝑾 is negative semidefinite. According to Eq. (4.6), 𝑹1 = 𝜦
𝑻𝑫𝑎𝜦, 𝑹2 = 𝜦

𝑻𝑫𝑏𝜦, 𝑹4 =
𝜦𝑻𝑫𝑐𝜦, and 𝑹5 = 𝜦

𝑻𝑫𝑒𝜦, where 𝜦 is an 𝑛 × 𝑛 orthogonal matrix and 𝜦𝑇𝜦 = 𝜦𝜦𝑇 = 𝑬𝑛. Let 

the diagonal positive definite matrices 𝑫𝑎 , 𝑫𝑏 , 𝑫𝑐  and 𝑫𝑒  be 𝑫𝑎 = diag(𝑎1, … , 𝑎𝑛), 𝑫𝑏 =
diag(𝑏1, … , 𝑏𝑛) , 𝑫𝑐 = diag(𝑐1, … , 𝑐𝑛), and 𝑫𝑒 = diag(𝑒1, … , 𝑒𝑛), respectively, where 𝑎𝑖 >
0 , 𝑏𝑖 > 0 , 𝑐𝑖 > 0 , and 𝑒𝑖 > 0  for 𝑖 = 1,… , 𝑛 . The following proposition discusses the 

sufficient conditions for matrix 𝑾 to be negative semidefinite 

Proposition 4. 𝑾 (𝑾 ∈ ℝ2𝑛×2𝑛) is a negative semidefinite matrix if matrices 𝑫𝑎, 𝑫𝑏, 𝑫𝑐 and 

𝑫𝑒, and the discount parameter 𝛽 are set such that 

𝑎𝑖 < 𝛽𝑐𝑖, ∀𝑖 = 1,2,⋯ , 𝑛  (4.46a) 

𝑒𝑖 ≥
−𝑐𝑖

2

𝛽(𝑎𝑖 − 𝛽𝑐𝑖)
, ∀𝑖 = 1,2,⋯ , 𝑛 (4.46b) 

𝑏𝑖 ≤
𝑐𝑖
2 + 𝛽𝑒𝑖(𝑎𝑖 − 𝛽𝑐𝑖)

𝑎𝑖 − 𝛽𝑐𝑖
, ∀𝑖 = 1,2,⋯ , 𝑛 (4.46c) 

for ∀𝑖. 

Proof. Matrix  𝑾 can be expanded as  

𝑾 = (𝑨 −
𝛽

2
𝑬𝑛)

𝑇

𝑸2 + 𝑸2 (𝑨 −
𝛽

2
𝑬𝑛) + 𝑸1 

= [
𝟎𝑛 𝟎𝑛
−𝑬𝑛 𝟎𝑛

] [
𝑹4

𝑹5
] + [

𝑹4
𝑹5
] [
𝟎𝑛 −𝑬𝑛
𝟎𝑛 𝟎𝑛

] − [
𝛽𝑬𝑛𝑹4

𝛽𝑬𝑛𝑹5
]

+ [
𝑹1

𝑹2
] 

= [
𝑹1 − 𝛽𝑹4 −𝑹4
−𝑹4 𝑹2 − 𝛽𝑹5

] 

 

 

 

 

 

(4.47) 

Denote 𝜦̃ = [𝜦
𝜦
], then 

𝑾̂ = 𝜦̃𝑾𝜦̃𝑇 = [𝜦
𝜦
] [
𝑹1 − 𝛽𝑹4 −𝑹4
−𝑹4 𝑹2 − 𝛽𝑹5

] [𝜦
𝑇

𝜦𝑇
] 
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= [
𝜦(𝜦𝑇𝑫𝑎𝜦 − 𝛽𝜦

𝑇𝑫𝑐𝜦)𝜦
𝑇 −𝜦𝜦𝑇𝑫𝑐𝜦𝜦

𝑇

−𝜦𝜦𝑇𝑫𝑐𝜦𝜦
𝑇 𝜦(𝜦𝑇𝑫𝑏𝜦 − 𝛽𝜦

𝑇𝑫𝑒𝜦)𝜦
𝑇] 

= [
𝑫𝑏 − 𝛽𝑫𝑐 −𝑫𝑐
−𝑫𝑐 𝑫𝑏 − 𝛽𝑫𝑒

] 

 

    (4.48) 

According to Eq. (4.47), the eigenvalues of matrix 𝑾̂  and 𝑾  are identical. Let 𝒛̌𝛽 =

(𝑥1,𝛽 , 𝑦1,𝛽 , 𝑥2,𝛽 , 𝑦2,𝛽 , … , 𝑥𝑛,𝛽 , 𝑦𝑛,𝛽)
𝑇
; 𝒛̌𝛽 is a vector of variables obtained by changing the order 

of variables in 𝒛𝛽. Then,  

(𝒛𝛽)
𝑇
𝑾̂ ∙ 𝒛𝛽 = (𝒛̌𝛽)

𝑇

[
 
 
 
𝑾̌1

𝑾̌2

⋱
𝑾̌𝑛]

 
 
 

⏟              
𝑾̌

∙ 𝒛̌𝛽 
(4.49) 

where 𝑾̌ is a block diagonal matrix defined above, in which 𝑾̌𝑖  (∀𝑖 = 1,2⋯ , 𝑛) is  

𝑾̌𝑖 = [
𝑎𝑖 − 𝛽𝑐𝑖 −𝑐𝑖
−𝑐𝑖 𝑏𝑖 − 𝛽𝑒𝑖

] (4.50) 

Note 𝑾̌𝑖 is a symmetric matrix. It is negative semidefinite if 

𝑎𝑖 − 𝛽𝑐𝑖 ≤ 0 (4.51a) 

and  

(𝑎𝑖 − 𝛽𝑐𝑖)(𝑏𝑖 − 𝛽𝑒𝑖) − 𝑐𝑖
2 ≥ 0 (4.51b) 

Obviously, inequality (4.51a) holds if 𝑎𝑖 < 𝛽𝑐𝑖. According to Eq. (4.51b), we have  

(𝑎𝑖 − 𝛽𝑐𝑖)(𝑏 − 𝛽𝑒𝑖) − 𝑐𝑖
2 = (𝑎𝑖 − 𝛽𝑐𝑖)𝑏𝑖 − 𝛽𝑒𝑖(𝑎𝑖 − 𝛽𝑐𝑖) − 𝑐𝑖

2 ≥ 0 (4.52) 

Note 𝑎𝑖 < 𝛽𝑐𝑖, inequality (4.52) implies that  

𝑏𝑖 ≤
𝑐𝑖
2 + 𝛽𝑒𝑖(𝑎𝑖 − 𝛽𝑐𝑖)

𝑎𝑖 − 𝛽𝑐𝑖
 (4.53) 

As 𝑏𝑖 ≥ 0, the right-hand side of inequality (4.4.53) holds only if  

𝑐𝑖
2 + 𝛽𝑒𝑖(𝑎𝑖 − 𝛽𝑐𝑖) ≤ 0 (4.54) 

This implies  

𝑐𝑖
2 + 𝛽𝑒𝑖(𝑎𝑖 − 𝛽𝑐𝑖) ≤ 0 (4.55) 

Thereby,    

𝑒𝑖 ≥
−𝑐𝑖

2

𝛽(𝑎𝑖 − 𝛽𝑐𝑖)
 (4.56) 

The above discussion shows that if inequalities (4.53), (4.56), and 𝑎𝑖 < 𝛽𝑐𝑖  hold, 𝑾̌𝑖  is a 

negative semidefinite matrix. Similarly, we can infer that the block diagonal matrix  𝑾̌ is 

negative semidefinite if inequalities (4.46a)-( 4.46c) hold. This implies that 𝑾̂ is negative 

semidefinite. Note that matrix 𝑾̂ is similar to the symmetric matrix 𝑾. Thereby, 𝑾 is negative 
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semidefinite if inequalities (4.46a)-(4.46c) hold. Proposition 4 is proved. ∎ 

It is worth mentioning that Proposition 4 only provides a sufficient condition to ensure the 

asymptotic stability of the unconstrained idealized MPC strategy. There exist other conditions 

under which the unconstrained idealized MPC strategy is also asymptotically stable. Further, 

there may exists multiple equilibrium states for the CAV platoon depending on the speed of 

the leading vehicle. Proposition 4 only ensures the local stability the unconstrained idealized 

MPC strategy. 

According to Proposition 4, the method to determine the diagonal positive definite matrices 

𝑫𝑎 , 𝑫𝑏 , 𝑫𝑐  and 𝑫𝑒  and the discount parameter 𝛽  to ensure asymptotic stable of the 

unconstrained idealized MPC strategy can be summarized as follows. First, set an arbitrary 

positive value for 𝛽 and a diagonal positive definite matrix 𝑫𝑐. Second, obtain the matrix 𝑫𝑎 

such that inequality (4.56a) is satisfied. Then, obtain matrices 𝑫𝑒  and 𝑫𝑏  according to 

inequalities (4.56b) and (4.56c), respectively. 

 

4.6 Numerical experiments 

This section discusses four numerical experiments to demonstrate the motivation for this study and 

to illustrate the effectiveness of the proposed DMPC-FOA approach. The first numerical 

experiment analyzes the computational time required for the leading vehicle to solve optimal 

control problem (4.5) for different initial inputs, prediction horizons, and the number of following 

vehicles. The second numerical experiment illustrates the detailed steps for sensitivity analysis of 

the optimal control problem. The first-order Taylor approximation method is then applied to 

estimate the solution of state variables, costate variables, and the optimal control decisions when 

the leading vehicle’s initial speed and position are changed. The estimated solution and the exact 

solution (computed using the solution algorithm in Section 4.3) are compared. The third numerical 

experiment compares the control performance of the DMPC-FOA approach with that of the DMPC 

approach assuming the movement of the leading vehicle is predetermined according to NGSIM 

field data. The fourth numerical experiment shows a traffic flow scenario where the DMPC 

approach fails to control the CAV platoon safely due to poor estimation of the optimal control 

decisions of the idealized MPC strategy. However, the DMPC-FOA approach can control the CAV 

platoon effectively and is able to characterize the optimal control decisions of the idealized MPC 

strategy accurately in this scenario. The last numerical experiment apply two more scenarios to test 

the performance of the proposed DMPC-FOA approach. 

4.6.1 Computational time for solving optimal control problem (4.5) 

The DMPC approach and DMPC-FOA approach need to reserve 𝜏1 and 𝜏2 time before each 

time instant, respectively, to estimate the optimal control decisions of the idealized MPC 

approach. 𝜏1 should be large enough such that the optimal control problem (4.5) (i.e., the two-

point boundary value problem (4.32)) can be solved using the shooting method, while 𝜏2 

should be sufficiently large so as to solve the two-point boundary value problems (32), (35) 

and (37) with the shooting method. Note that the computational times for the two-point 

boundary value problems significantly depend on the platoon size (𝑛), the prediction horizon 

(𝑇𝑃) and the initial state of the CAV platoon. In this study, the values of 𝜏1 and 𝜏2 will be 

determined offline according to platoon size and the prediction horizon. For each platoon size 

(varying from 2 to 15) and the prediction horizon (varying from 1 second to 8 seconds), we 
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randomly generated 1000 initial states of the CAV platoon. The shooting method is applied to 

solve the two-point boundary value problems (32), (35) and (37) under each initial state. The 

computational time for solving the two-point boundary value problems (32) corresponding to 

0.95 cumulative probability is used as the baseline for 𝜏1, while the total computational time 

for solving the two-point boundary value problems (32), (35) and (37) corresponding to 0.95 

cumulative probability is used as the baseline for 𝜏2. 

Table 4.1 shows the detailed inputs of the parameters in the optimal control problem (4.5). 

These inputs are used for all four numerical experiments. The discount parameter 𝛽 and the 

matrices 𝑹1, 𝑹2, 𝑹4, and 𝑹5 in optimal control problem (4.5) are set as follows: 𝛽 = 1, 𝑹1 =
0.5𝑬𝑛, 𝑹2 = 𝑹4 = 𝑬𝑛, 𝑹5 = 3𝑬𝑛. These inputs satisfy the inequalities in Proposition 4 to 

ensure that the unconstrained idealized MPC strategy is asymptotic stable. It is worth 

mentioning that the value of 𝛽 decides the weights of the running cost at different time in 

future. It not only impacts the stability of the benchmark MPC approach, but also the estimation 

performance of the DMPC-FOA approach. Our analysis shows that the stability performance 

of the benchmark MPC approach and the estimation performance of the DMPC-FOA are better 

when 𝛽 ∈ [0.5,1.5].  

 

Table 4.1. Input parameters for optimal control problem (4.5) 

Variables Default value 

Minimum acceleration (𝑢𝑚𝑖𝑛) −5 𝑚/𝑠2 

Maximum acceleration (𝑢𝑚𝑎𝑥) 3 𝑚/𝑠2 

Minimum spacing (s𝑚𝑖𝑛) 5 𝑚 

Safety space (s𝑓) 10 𝑚 

Speed limit (𝑣𝑚𝑎𝑥) 33.5 𝑚/𝑠 (120 𝑘𝑚/ℎ) 

Time headway (𝑟∗) 1 𝑠 

 

  
Figure 4.5.  Cumulative probability of computational time for solving optimal control problem (4.5) 

with different initial inputs (i.e., 𝐱(0) and 𝐲(0)) at n = 8 and TP = 4s and 6s. 
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Without loss of generality, suppose the initial time is 0. To ensure that optimal control problem 

(4.5) can be solved within 𝜏1 seconds under different initial inputs of position errors (i.e., 𝐱(0)) 
and speed differences (i.e., 𝐲(0)) of all adjacent vehicles pairs, 𝐱(0) is generated randomly in 

the interval [−10,100]  and 𝐲(0) is randomly generated in the interval [0,20] . This study 

generates 1000 different values for 𝐱(0) and 𝐲(0) for which the inequality constraints (Eq. 

(4.4.5c)) are satisfied.  

The numerical experiments were coded in MATLAB and executed on a computer with an Intel 

Core i7-4790 3.60-GHz CPU with 8.00 GB of RAM. To analyze the impacts of the number of 

following vehicles in the platoon (𝑛) and the prediction horizon (𝑇𝑃) on computational time, 

optimal control problem (4.5) is solved 1000 times under different feasible initial inputs for 

each combination of 𝑛 and 𝑇𝑃.  

Fig. 4.5 shows the cumulative probability of computational time for solving the optimal control 

problem (4.5) with different initial inputs (i.e., 𝐱(0) and 𝐲(0)) for 𝑛 = 8 and 𝑇𝑃 = 4𝑠 and 6𝑠. 
It shows that the computational time significantly depends on the value of 𝐱(0) and 𝐲(0). The 

computational time ranges from 0.08s to 0.4s under 𝑛 = 8 and 𝑇𝑃 = 4𝑠. It is worth noting that 

computational times are large only when the initial position errors of many adjacent vehicle 

pairs deviate remarkably from the equilibrium state (i.e., they are close to 100 𝑚 ), the 

likelihood of occurrence of which is low in the real world. Hence, this study uses the 

computational time corresponding to 0.95 cumulative probability as the reference point to 

determine the reserved time for the DMPC and DMPC-FOA approaches.  

 
 

Figure 4.6. Computational time corresponding to 0.95 cumulative probability under different n and 

TP. 

 

Fig. 4.6 shows the computational time corresponding to 0.95 cumulative probability under 

different 𝑛 and 𝑇𝑃. The computational time corresponding to 0.95 cumulative probability is the 

time within which 95% of the experimental scenarios can be solved. Fig. 4.6 illustrates that the 

computational time corresponding to 0.95 cumulative probability increases monotonically with 

the number of following vehicles and the prediction horizon.  
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4.6.2 Sensitivity analysis of optimal control problem (4.5) 

Figure 4.7 presents the solutions of costate variables and optimal control decisions at the 

unperturbed initial state: (a) solutions of costate variables; (b) optimal control decisions. 

 

(a)                                                (b) 

Figure 4.7. Solutions of costate variables and optimal control decisions at the unperturbed initial 

state: (a) solutions of costate variables; (b) optimal control decisions. 

 

This section shows the details of the sensitivity analysis method implementation for the optimal 

control problem (4.5) introduced in section 4.4. Consider a CAV platoon with 5 following 

vehicles (𝑛 = 5). The leading vehicle and all following vehicles drive at a speed of 20 𝑚/𝑠 at 

time 0 (i.e., 𝐲(0) = 0). Suppose the initial position errors of vehicle 2 to vehicle 5 are all 0, 

and the initial position error of vehicle 1 with respect to the leading vehicle is 90 m. This 

implies that the spacing between vehicle 1 and vehicle 0 is 90 + 𝑇 ∙ 20 + 𝑠𝑓 = 120𝑚 . It 

indicates a case where the following vehicles seek to catch up with the leading vehicle.  Let 

𝑇𝑃 = 5 𝑠. Fig. 4.7(a) shows the optimal solutions of the costate variables obtained using the 

solution algorithm proposed in Section 4.3. The optimal control decisions of all following 

vehicles in the platoon can then be determined according to Eq. (4.23). Fig. 4.7(b) shows the 

optimal control decisions of vehicles 1, 3 and 5. It indicates that vehicle 1 accelerates at the 

maximum value ( 3 𝑚/𝑠2)  for the first 1.7 seconds. Then, the acceleration decreases 

monotonically in the time interval [1.7s, 4.3s] and then increases.  

Suppose the initial position and speed of the leading vehicle at time 0 are perturbed. Then, 

𝑥1(0) and 𝑦1(0) change from the unperturbed values 90 and 0, respectively. Fig. 4.8 shows 

the derivatives of solutions for the state and costate variables with respect to 𝑥1(0) and 𝑦1(0), 
respectively. They are obtained by solving the two-point boundary value problem (4.35) and 

(37), respectively. Fig. 4.8 shows that at the optimal state, a unit change in 𝑥1(0) and 𝑦1(0) 
will increase the optimal solution of 𝑥1(𝑡)  and 𝑦1(𝑡)  by 1, respectively, at time interval 

[0,1.7]. The impacts of variations in 𝑥1(0) and 𝑦1(0) on 𝑥1(𝑡) and 𝑦1(𝑡) decrease after 1.7 

seconds.  
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(a)                                                   (b) 

 

(c)                                                    (d) 

 

Figure 4.8.  Derivatives of the state and costate variables with respect to x1(0) and y1(0), respectively, 

at the unperturbed initial state: (a) derivatives of the state variables with respect to x1(0); (b) 

derivatives of the state variables with respect to y1(0); (c) derivatives of the costate variables with 

respect to x1(0); (d) derivatives of the costate variables with respect to y1(0). 
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(a) 

 

(b) 

 

(c) 

 

Figure 4.9. Comparison of estimated and perturbed optimal solutions for the state and costate 

variables: (a) comparison of estimated and perturbed optimal solutions of position errors; (b) 

comparison of estimated and perturbed optimal solutions of speed difference for adjacent vehicle pairs; 

(c) comparison of estimated and perturbed optimal solutions for the costate variables.  
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Suppose both 𝑥1(0) and 𝑦1(0) are increased by 4 units (for example, due to prediction error). 

Using the  first-order Taylor approximation (Eq. (4.4.38)), Fig. 4.9 compares the estimated and 

perturbed optimal solutions for the state variables and costate variables. The perturbed 

solutions are obtained using the solution algorithm at the perturbed states of 𝑥1(0) and 𝑦1(0). 
Fig. 4.9 shows that the estimated solutions are very close to those of the perturbed solutions, 

indicating that the  first-order Taylor approximation can accurately characterize the variation 

in the optimal solutions induced by changes in 𝑥1(0) and 𝑦1(0). Based on the estimated 

solutions for the costate variables (i.e., 𝜸), Fig. 4.10 compares the optimal control decisions of 

following vehicles estimated by Eq. (4.4.39) and the perturbed ones obtained using the solution 

algorithm in Section 4.3. It shows that the estimated solutions are also very close to the 

perturbed ones obtained using the solution algorithm.  

 
Figure 4.10. Comparison of estimated and perturbed optimal control decisions of the following 

vehicles. 

 

4.6.3 Control performance of the DMPC and DMPC-FOA approaches 

Figure 4.11 presents the acceleration of the leading vehicle. 

 
Figure 4.11.  Acceleration of the leading vehicle 
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Note that both the DMPC and DMPC-FOA approaches seek to address the issue of control 

delay and estimate the optimal control decisions of the idealized MPC strategy. This section 

compares the control decisions of the DMPC approach, the DMPC-FOA approach and the 

idealized MPC strategy. To do so, we consider a CAV platoon with 8 following vehicles 

(vehicle IDs 1-8). The acceleration of the leading vehicle is shown in Fig. 4.11. It contains a 

240-seconds (with resolution 0.1 second) real-world vehicle control diary collected on 

eastbound I-80 in the San Francisco Bay area at Emeryville, California. It can be noted that the 

vehicle decelerated or accelerated mildly most of the time. However, it contains some time 

slots with hard braking and high acceleration (e.g., the time slots around 110s, 140s and 186s).  

Suppose the prediction horizon and the roll period are 𝑇𝑃 = 5 seconds and ∆𝑡 = 1 second, 

respectively. According to Fig. 4.6, the computational time for solving optimal control problem 

(4.5) corresponding to 95% cumulative probability with 8 following vehicles is 0.33 seconds. 

To reserve enough time for solving the optimal control problem, 𝜏1 is set as 0.4 seconds for 

the DMPC approach. Note that the DMPC-FOA approach needs to solve optimal control 

problem (4.5) as well as perform sensitivity analysis of the optimal control problem with 

respect to 𝑥̃1(0) and 𝑦̃1(0). Thereby, 𝜏2 ≥ 𝜏1. From 1000 simulations, the total computational 

time for solving the optimal control problem (4.5) and the two-point boundary value problems 

(problems (35) and (37)) corresponding to 95% cumulative probability is around 0.56 seconds. 

Thereby, 𝜏2 is set as 0.6 seconds. It should be noted that among the 1000 simulations, there are 

situations where some following vehicles need to brake and accelerate at the maximum rate 

during the prediction horizon. Thereby, 𝜏2 = 0.6𝑠 > 𝜏1 = 0.4𝑠. According to Proposition 3, if 

these situations do not exist and the spacing of each following vehicle is always greater than 

the minimum value (𝑠𝑚𝑖𝑛), 𝜏2 can be set the same as 𝜏1.  

 

                                   (a)                                                               (b) 

Figure 4.12. Differences between the estimated control decisions of the DMPC and DMPC-FOA 

approaches from those of the idealized MPC strategy: (a) difference between control decisions of the 

DMPC approach and those of the idealized MPC strategy; (b) difference between control decisions of 

the DMPC-FOA approach and those of the idealized MPC strategy. 
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                                    (a)                                                                 (b) 

Figure 4.13.  Differences in optimal spacing and speed between the DMPC approach and the 

idealized MPC strategy: (a) difference in optimal spacing; (b) difference in optimal speed. 

 

Fig. 4.12 shows the difference between the estimated control decisions of  the DMPC approach 

(i.e, ∆𝑢𝑖 = 𝑢̂𝑖
∗(𝑡) − 𝑢𝑖

∗(𝑡), ∀𝑖 = 1,2,⋯𝑛) and the DMPC-FOA approach (i.e, ∆𝑢𝑖 = 𝑢̅𝑖
∗(𝑡) −

𝑢𝑖
∗(𝑡), ∀𝑖 = 1,2,⋯𝑛) from those of the idealized MPC strategy. Fig. 4.(12a) shows that the 

estimated control decisions of the DMPC approach are close to those of the idealized MPC 

strategy with the maximum difference less than 0.45 𝑚/𝑠2. The estimation errors of the control 

decisions of DMPC approach are induced by the prediction error of 𝑥1(𝑡) and 𝑦1(𝑡) at each 

sampling time instant. However, through first-order Taylor’s approximation, the DMPC-FOA 

approach can significantly improve on the estimation performance of the DMPC approach. As 

can be seen from Fig. 4.12(b), the maximum difference between the control decisions 

estimated by the DMPC-FOA approach and the idealized MPC strategy is less than 

3 × 10−5 𝑚/𝑠2, indicating that the DMPC-FOA approach can characterize the decisions of 

the idealized MPC strategy very well.  

 
 

Figure 4.14. Prediction errors of the initial states of x1(tk) and y1(tk), tk = 1s, 2s,⋯ , 240s. 
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Fig. 4.13 illustrates the differences in optimal spacing and speed between the DMPC approach 

and the idealized MPC (i. e. , ∆s𝑖 and ∆𝑣𝑖, respectively, 𝑖 = 1,2,⋯𝑛). It shows that while the 

estimated control decisions of DMPC approach deviate from the idealized MPC strategy, the 

optimal spacing and speed obtained by the DMPC approach are very close to those of the 

idealized MPC strategy. Hence, the DMPC approach is able to control the CAV platoon 

efficiently in this case. To investigate the reason for the good control performance of the 

DMPC approach in this scenario, Fig. 4.14 shows the prediction errors of the initial inputs of 

𝑥1(𝑡) and 𝑦1(𝑡) at each sampling time instant 𝑡𝑘 , 𝑘 = 1,2,⋯ . Recall ∆𝑡 = 1𝑠. Hence, 𝑡𝑘 =
1𝑠, 2𝑠,⋯ , 240𝑠. It shows that the predicted values of 𝑥1(𝑡𝑘) and 𝑦1(𝑡𝑘), 𝑘 = 1,2,⋯ are very 

close to those of the exact ones as the leading vehicle drives with mild acceleration or 

deceleration most of the time (see Fig. 4.11). The large prediction error occurs at the moments 

when the leading vehicle has hard acceleration or deceleration (e.g., 𝑡 = 110𝑠, 140𝑠, 186𝑠 
etc.). Correspondingly, the DMPC approach also has larger estimation errors in terms of the 

optimal solutions relative to those of the idealized MPC strategy (see Fig. 4.12(a) and Fig. 

4.13). However, as these “extreme” behaviors of the leading vehicle only last for small time 

periods, their impacts are small. In addition, if 𝑥1(𝑡𝑘) and 𝑦1(𝑡𝑘) are accurately predicted at a 

time instant 𝑡𝑘, the large difference in optimal solutions between the DMPC approach and the 

idealized MPC strategy in the previous roll period will be reduced significantly at the current 

roll period starting from time instant 𝑡𝑘. This can be observed in Fig. 4.12(a) and Fig. 4.13 

where the large differences at time instants 𝑡 = 110𝑠, 140𝑠, 186𝑠 are reduced dramatically in 

the roll periods following time instants at which 𝑥1(𝑡) and 𝑦1(𝑡) are predicted with low errors 

at the corresponding sampling time instants  (i.e., 𝑡𝑘 = 111𝑠, 141𝑠, 187𝑠, see Fig. 4.14).  

Fig. 4.15 shows the control decisions of the following vehicles estimated by the DMPC-FOA 

approach. It indicates that when the leading vehicle 0 executes hard acceleration/deceleration, 

vehicle 1 also executes hard acceleration/deceleration with a magnitude slightly less than that 

of the leading vehicle 0. The acceleration or deceleration decreases sequentially in the platoon, 

indicating that the traffic oscillation is damped sequentially from the head of the platoon to its 

tail. Fig. 4.16 shows the optimal spacing and speed differences of adjacent vehicle pairs in the 

platoon computed by the DMPC-FOA approach. These results are almost identical to those of 

the idealized MPC strategy with the maximum absolute error less than 8 × 10−8 due to the 

high accuracy of the estimated optimal control decisions (see Fig. 4.12(b)). As can be seen in 

Fig. 4.16, the oscillation of the optimal spacing and speed difference of adjacent vehicle pairs 

decreases sequentially in the platoon. These results indicate that the DMPC-FOA approach can 

lead to smooth deceleration and acceleration behavior of all following vehicles. In addition, it 

can coordinate the behavior of all following vehicles to dissipate the traffic oscillation to ensure 

stability of the CAV platoon.  
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Figure 4.15. Estimated control decisions of the DMPC-FOA approach. 

 

 

(a)                                                                           (b) 

Figure 4.16.  Optimal spacing and speed difference for some adjacent vehicle pairs in the platoon 

computed by DMPC-FOA approach: (a) spacing of adjacent vehicle pairs; (b) speed difference of 

adjacent vehicle pairs. 

 

4.6.4 Scenario where the DMPC approach fails to control the CAV platoon 

The previous section illustrated a scenario in which the estimated control decisions and the 

solutions for the state variables of the DMPC approach are very close to those of the idealized 

MPC strategy. Here, we illustrate a scenario in which when the DMPC approach fails to 

accurately predict the values of 𝑥1(𝑡𝑘) and 𝑦1(𝑡𝑘) at each sampling time instant 𝑡𝑘, the error 

of the control decisions between the DMPC approach and idealized MPC strategy increases 

with each roll period. Then, the car-following behavior of the vehicles controlled by the DMPC 

approach significantly deviates from that of the idealized MPC strategy. However, as will be 

illustrated, the DMPC-FOA approach accurately characterizes the optimal control decisions of 

the idealized MPC strategy. 
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(a)                                                                        (b) 

Figure 4.17. Acceleration and speed of the leading vehicle: (a) acceleration of the leading vehicle; 

(b) speed of the leading vehicle. 

 

Consider a CAV platoon with 10 following vehicles. Let 𝑇𝑃 = 5 seconds and ∆𝑡 = 1 second. 

According to Fig. 4.6, the computational time corresponding to 95% cumulative probability is 

0.42 seconds. Hence, we set 𝜏1 = 0.5 seconds for the DMPC approach. By conducting 1000 

simulation runs with different initial inputs for 𝑥1(0)  and 𝑦1(0),  the computational time 

corresponding to 95% cumulative probability for the DMPC-FOA approach is determined as 

0.66 seconds. We will set 𝜏2 = 0.7 seconds for the DMPC-FOA approach.  

Suppose the leading vehicle drives at 30 𝑚/𝑠 at time 0. Assume the leading vehicle accelerates 

at the maximum value 3 𝑚/𝑠2 for 0.5 seconds and then decelerates at the maximum value 

−5 𝑚/𝑠2 for 0.5 seconds. Such behavior will repeat for 30 seconds until the leading vehicle 

stops. Fig. 4.17(a) shows the trajectory of the assumed acceleration of the leading vehicle. The 

corresponding speed of the leading vehicle is shown in Fig. 4.17(b).  

As ∆𝑡 = 1 second, the sampling time instant 𝑡𝑘 = 𝑘  seconds for 𝑘 = 1,2,⋯ . Under the 

assumed acceleration behavior of the leading vehicle, the prediction errors of 𝑥1(𝑡𝑘) and 

𝑦1(𝑡𝑘) using the DMPC approach are −1 𝑚 and 4 𝑚/𝑠, respectively, at each sampling time 

instant 𝑡𝑘 . Note that the prediction errors of 𝑥1(𝑡𝑘) and 𝑦1(𝑡𝑘)  (𝑘 = 1,2,3⋯ ) for DMPC-

FOA are the same as that of DMPC approach.   

Fig. 4.18 compares the optimal solutions for the DMPC approach, the DMPC-FOA approach 

and the idealized MPC strategy. It illustrates that both spacing and control decisions of vehicle 

1 computed using the DMPC approach deviate significantly from those of the idealized MPC 

strategy due to the large prediction errors of 𝑥1(𝑡𝑘) and 𝑦1(𝑡𝑘) (𝑘 = 1,2,⋯). In addition, the 

spacing between the leading vehicle 0 and vehicle 1 even reduce to a value less than the 

minimum allowable spacing 𝑠𝑚𝑖𝑛 (𝑠𝑚𝑖𝑛 = 5 𝑚 ). Thereby, a collision will occur between 

leading vehicle 0 and vehicle 1 in the platoon. Note that the DMPC approach stops at 𝑡 = 18𝑠 
as the safety constraints (inequality (4.5c)) cannot be satisfied thereafter. Hence, no solution 

can be found using the DMPC approach. By contrast, the DMPC-FOA approach provides an 

optimal solution very close to that of the idealized MPC strategy. When the leading vehicle 

stops at 𝑡 = 30𝑠, the spacing between leading vehicle 0 and vehicle 1 is over 10 𝑚 to ensure 

safety. These results highlight that the DMPC-FOA approach can effectively improve the 

estimation performance significantly beyond that of the DMPC approach even under extreme 

scenarios.  
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(a)                                                                      (b) 

Figure 4.18. Comparison of solutions for spacing and control decisions of vehicle 1 among the 

DMPC approach, the DMPC-FOA approach and the idealized MPC strategy: (a) comparison of 

solution for spacing of vehicle 1; (b) comparison of control decisions for vehicle 1 

 

The control performances of the above two scenarios show that when the leading vehicle 

decelerates or accelerates mildly and less frequently (e.g., when traffic density is low), the 

DMPC approach is sufficient to control the CAV platoon efficiently. However, when the 

leading vehicle executes a hard brake or accelerates frequently (e.g., in congested traffic flow), 

the DMPC-FOA approach should be applied to ensure the safety and efficiency of the CAV 

platoon. 

 

4.6.5 Two other scenarios to test the control performances of DMPC-FOA approach 

In this section, the following two traffic scenarios are considered to validate the performance 

of the DMPC-FOA approach. Assume that the number of following CAVs in the platoon is 8. 

Let 𝜏2 = 0.6 seconds. 

In scenario 1, the leading vehicle performs acceleration and deceleration maneuvers to 

represent a situation in which the platoon approaches a traffic jam on a highway and moves 

out of the traffic jam afterwards. In the simulation of 180 seconds, the leading vehicle drives 

at a constant speed of 25 𝑚/𝑠 for 20 seconds. It decelerates at -4 𝑚/𝑠2 and accelerates at 3 

𝑚/𝑠2 in time [20𝑠, 23𝑠] and [110𝑠, 114𝑠], respectively.  
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(a)                                                               (b) 

 

(c)                                                            (d) 

Figure 4.19. Optimal results computed by DMPC-FOA approach for scenario 1: (a) Control 

decision; (b) Difference in optimal control decisions between the DMPC approach and the idealized 

MPC strategy; (c) spacing of adjacent vehicle pairs; (d) difference in speed of adjacent vehicle pairs 

 

In scenario 2, suppose the platoon approaches a signalized intersection. The leading vehicle 

drives at a constant speed of 30 𝑚/𝑠 initially and decelerates at -2 𝑚/𝑠2 at 𝑡 = 10s until it 

stops completely. Fig. 4.19 shows the optimal results of the DMPC-FOA approach for scenario 

1. As can be seen, the magnitudes of deceleration and acceleration decrease from the head of 

the platoon to its tail, implying that the scale of perturbation decreases sequentially in the 

platoon (Fig. 4.19(a)). Fig. 4.19(b) shows that the maximum error of the estimated optimal 

control is less than 5 × 10−3 𝑚/𝑠2, indicating that the DMPC-FOA approach can accurately 

characterize the optimal control of the idealized MPC approach.  Fig. 4.19(c) and Fig. 4.19(d) 

illustrate the evolution of space headway and speed difference of adjacent vehicle pairs, 

respectively. These results further validate that the DMPC-FOA approach can damp traffic 

oscillations effectively.  

For scenario 2, similarly, the DMPC-FOA approach can accurately estimate the optimal 

control decisions of the idealized MPC approach (see Fig. 4.20(a)). The following vehicles 

decelerate when the leading vehicle decelerates and converge to the equilibrium state 

sequentially (see Fig. 4.19(b)). The evolution of space headway and speed difference of 

adjacent vehicle pairs show that the traffic oscillation decays in the platoon (Figures 4.20(c) 
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and 4.20 (d)). ” 

 

(a)                                                                   (b) 

 

(c)                                                                 (d) 

Figure 4.20.  Optimal results computed by DMPC-FOA approach for scenario 2: (a) Difference in 

optimal control decisions between the DMPC approach and the idealized MPC strategy; (2) speed of 

each vehicle; (c) spacing of adjacent vehicle pairs; (d) difference of speed of adjacent vehicle pairs. 
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5. FINDINGS AND CONCLUSIONS 

This study investigated the cooperative control mechanism for CAV platoon factoring communication 

and computational issues.  

The proposed novel CACC strategy in section 2, namely CACC-OIFT, explicitly factors IFT dynamics 

and leverages it to enhance the platoon performance in an unreliable V2V communication context for a 

pure CAV platoon. The proposed CACC-OIFT consists of an adaptive PD controller and an IFT 

optimization model. Given the adaptive PD controller with a two-predecessor-following scheme, and 

the ambient traffic conditions and the platoon size just before the start of a time period, the IFT 

optimization model determines the optimal IFT that dynamically activates and deactivates the “send” 

functionality of the V2V communication devices of all vehicles in platoon, which maximizes the 

expected string stability. Since communication failures can cause IFT to degenerate dynamically, all 

possible degeneration scenarios for that IFT are considered in this expectation. The degeneration 

scenario probabilities are determined based on the communication failure probabilities for that time 

period which depend on the ambient traffic conditions. In the operational deployment context, based on 

the various degeneration scenarios for the optimal IFT at different time instants within the time period, 

the adaptive PD controller continuously determines the car-following behaviors of the vehicles in the 

platoon. A two-step algorithm is proposed to solve the IFT optimization problem by leveraging some 

key proven properties, such as the leading vehicle in the platoon should always activate its “send” 

functionality. Extensive numerical simulations are conducted in NS-3 to illustrate the effectiveness of 

CACC-OIFT.  

To the best of our knowledge, section 2 is the first attempt to explicitly factor IFT dynamics and to 

leverage it to enhance the performance of CACC strategies. Further, it is the first study to perform a 

rigorous mathematical modeling of the problem to theoretically illustrate properties. The insights from 

numerical experiments suggest that CACC-OIFT can leverage IFT dynamics to proactively reduce V2V 

communication failures while ensuring realism in terms of factoring the ambient traffic conditions. 

Further, the proposed two-step algorithm and its ability to be parallelized ensure computational 

tractability for operational deployment for platoons of considerable size (15 vehicles in this study). Also, 

the study insights provide key pointers for future CACC designs, in that communication failures and 

IFT dynamics should be considered to enable realism and enhance control performance. In summary, 

CACC-OIFT can generate a more reliable IFT for a CAV platoon, damp traffic oscillation propagation, 

and stabilize the traffic flow more efficiently for the entire platoon. Thereby, CACC-OIFT is string 

stable and outperforms strategies proposed in the current literature, CACC-DIFT and CACC-FIFT, 

considerably. 

To further enhance the riding comfort and string stability, section 3 introduces the CACC-SOIFT 

framework for CAV platoons in the dynamic IFT environment arising from V2V communication 

failures. The CACC-SOIFT is developed based on the bi-level optimization of the IFT and the controller 

parameters, as well as the use of a Kalman predictor to trade off idealized string stability, 

communication failures, and the smoothness of vehicle acceleration. Insights from numerical 

experiments suggest that CACC-SOIFT can effectively attenuate traffic oscillations and enhance riding 

comfort. 
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Section 4 first proposes an idealized MPC-based cooperative control strategy for CAV platooning. Its 

optimal control decisions can coordinate the behaviors of all following CAVs in the platoon to maneuver 

them effectively and safely. However, as in existing literature, it is based on the idealized, but 

unrealistic, assumption that the embedded optimal control problem can be solved instantaneously. To 

relax this idealized assumption, two deployable strategies, i.e., the DMPC approach and the DMPC-

FOA approach, are proposed to address the control delay issue of the idealized MPC strategy and to 

accurately characterize its optimal control decisions. The DMPC approach addresses the control delay 

issue by reserving sufficient time before each sampling time instant to solve the embedded optimal 

control problem. However, the estimated control decisions of the DMPC approach can deviate 

significantly from those of the idealized MPC strategy due to errors in predicting the leading vehicle’s 

position and speed. By contrast, the DMPC-FOA approach addresses the control delay issue effectively 

while accurately characterizing the optimal control decisions of the idealized MPC strategy by 

leveraging the proposed analytical sensitivity analysis method for the embedded optimal control 

problem. The application of the DMPC-FOA approach for a CAV platoon whose lead vehicle’s 

trajectory is obtained from field data illustrates that it can dampen traffic oscillations efficiently, and 

can enable smooth deceleration and acceleration behaviors for all following vehicles. In addition, it can 

provide control decisions very similar to those of the idealized MPC strategy even under extreme 

situations where the leading vehicle’s speed and position are predicted very poorly at each sampling 

time instant.  

It is important to note that the DMPC-FOA approach concept can also be leveraged to address the issue 

of control delay for other MPC-based cooperative control strategies (e.g., Wang et al., 2014a) arising 

from the computational time required to solve the embedded optimal control problem. It can be applied 

for real-time control of large CAV platoons on the condition that the time reserved for computing 

(i.e., 𝜏2) is less than the roll period (∆𝑡).  

It should be noted that while the proposed DMPC-FOA approach can fundamentally address the control 

delay issue induced by the computational time for the optimal control problem, there is the need to relax 

some assumptions in this study to make the control approach more robust and reliable to deal with real-

world situations.  
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6. RECOMMENDATIONS 

This study points out the following future directions: 

The future directions of control mechanism related to communication issues are described as follows. 

In the V2V communications context, our future work includes: (i) considering the role of receiver 

failure; (ii) factoring retransmission mechanism in modeling process; and (iii) investigating the 

application of other communication protocols (e.g., 5G). In the context of controller design, this research 

motivates the following tasks: (i) factoring communication delay, actuator delay, nonlinear vehicle 

dynamics and external disturbances to design a more realistic controller; (ii) modeling heterogeneous 

vehicle platoons, and deriving the heterogeneous string stability condition; (iii) analyzing stability of a 

hybrid dynamic system during the switching process; (iv) analyzing the switching process to guarantee 

smooth transition between controller sets; and (v) include developing safety-augmented controllers, 

factoring the heterogeneous string stability and communication delay into controller design, and 

considering non-stationary random disturbances into the Kalman predictor. Related to the optimization 

problem, possible future directions include: (i) including more performance matrices or constraints (e.g., 

comfort, fuel consumption) into the objective function; and (ii) developing a more efficient algorithm 

to reduce computational time. 

The future directions related to computational issues can be summarized as follows. First, the proposed 

DMPC-FOA approach is a centralized controller for a CAV platoon. It relies on a single vehicle to 

compute the optimal control decision. The application of the DMPC-FOA approach for real-time control 

of the CAV platoon can be constrained by the reserved time 𝜏2 , which is determined by the 

computational time of the DMPC-FOA approach. To enable controlling a large-size CAV platoon with 

a large prediction horizon, discretization technique (see e.g., Wei et al., 2017) and a new solution 

algorithm (e.g., distributed dynamic programming algorithm) will be developed to reduce the 

computational time for the optimal control problem. Second, this study does not consider the impacts 

of uncertainties on system dynamics (e.g., false execution of optimal control, dynamic resistance of the 

pavement) and initial vehicle conditions (e.g., dynamic communication delay, dynamic sensor 

measurement errors). However, it is worth mentioning that the MPC approach has some level of 

robustness against the disturbance of vehicles’ state (see Zhou et al., 2017). Further, the analytical 

sensitivity analysis method for optimal control problem proposed in this study is able to quantify the 

impacts of changes in both control decisions and initial vehicle conditions on dynamics of the CAV 

platoon and platoon performance. In future work, robust cooperative control strategies will be developed 

by leveraging the analytical sensitivity analysis method to enable safe and efficient control of the CAV 

platoon under different levels of uncertainty. Third, the application of the DMPC-FOA approach 

depends on two necessary conditions. First, the optimal control decisions are estimated within 𝜏2 time. 

Second, the V2V communications are reliable such that the information can be delivered successfully 

between the leading vehicle and each of the following vehicles. For the cases that one of the two 

necessary conditions is not satisfied, the ACC or cooperative sensing-based CACC models should be 

applied immediately to control the car-following behavior of all CAVs. In future, a switching control 

which leverages the DMPC-FOA approach and the ACC models (or cooperative sensing-based CACC 

models) will be developed to control the CAV platoon under different traffic flow and communication 

environments.  
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7. SYNOPSIS OF PERFORMANCE INDICATORS 

7.1 Part I 
The research from this advanced research project was disseminated to 54 people from industry, government, and 

academia. The research was presented at several conferences, including 23rd International Symposium on 

Transportation and Traffic Theory, ISTTT 23, 24-26 July 2019 in Lausanne, Switzerland, the Transportation 

Research Board 2020 Annual Meeting in Washington, DC, and the 2018 INFORMS Annual Meeting in Phoenix, 

Arizona. This project supported 4 students at the doctoral level.  The outputs, outcomes, and impacts are described 

in the following sections.  

 

7.2 Part II 
Research Performance Indicators: 1 conference article and 5 peer-reviewed journal article were produced from 

this project. At the time of writing, there are no new technologies, procedures/policies, and standards/design 

practices that were produced by this research project. There was collaboration with other agencies as 1 insitution 

provided matching funds. 

The outputs, outcomes, and impacts are described in Section 7 below. 

 

8. OUTPUTS, OUTCOMES, AND IMPACTS 

8.1   List of research outputs (publications, conference papers, and presentations) 

• Wang, J., Gong, S., Peeta, S., & Lu, L. (2019). A real-time deployable model predictive 

control-based cooperative platooning approach for connected and autonomous vehicles. 

Transportation Research Part B: Methodological, 128, 271-301. 

https://www.sciencedirect.com/science/article/pii/S0191261518310427 

• Wang, C., Gong, S., Zhou, A., Li, T., & Peeta, S. (2020). Cooperative adaptive cruise control 

for connected autonomous vehicles by factoring communication-related constraints. 

Transportation Research Part C: Emerging Technologies, 113, 124-145. 

https://www.sciencedirect.com/science/article/pii/S0968090X18317133 

• Wang, C., Gong, S., Zhou, A., Li, T., & Peeta, S. (2019). Cooperative adaptive cruise control 

for connected autonomous vehicles by factoring communication-related constraints. 

Transportation Research Procedia, 38, 242-262.   

https://www.sciencedirect.com/science/article/pii/S2352146519300237 

• Zhou, A., Gong, S., Wang, C., & Peeta, S. (2020). Smooth-Switching Control-Based 

Cooperative Adaptive Cruise Control by Considering Dynamic Information Flow Topology. 

Transportation Research Record, 2674(4), 444-458. 

https://journals.sagepub.com/doi/full/10.1177/0361198120910734 

• Wang, J., Gong, S., Peeta, S., Lu, L. (2020). A real-time deployable model predictive control-

based cooperative platooning approach for connected and autonomous vehicles. 99th Annual 

Meeting of Transportation Research Board (TRB), Washington, D.C, USA. 

• Li, Y., Tang, C., Li, K., He, X., Peerta, S., Wang, Y. (2019). Consensus-Based Cooperative 

Control for Multi-Platoon Under the Connected Vehicles Environment. IEEE Transactions on 

Intelligent Transportation Systems, Vol. 20, Nr. 6, 2220-2229. 

https://ieeexplore.ieee.org/document/8458142 
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8.2 Outcomes 

This research project facilitates the understanding and awareness of the implementation of CAV 

platoon control in the real-world conditions. Specifically, the communication and computation-

related issues are explicitly addressed in the research, such that the proposed control strategy can 

perform and function as expected.  

This project also the improvement of CACC technologies and their application in the real world 

from several perspectives. First, insights from this project can be leveraged in transferring 

theoretical CACC control strategies into practices where communication-related constraints exist. 

Second, this project alleviates the computational burden in the implementation of CACC control in 

real-time, such that the desired platoon control performance can be achieved to improve traffic 

flow. Further, the study carried out rigorous mathematical modeling of the relevant computational 

and communication-related problems to illustrate theoretical concepts in the real-world context.  

8.3  Impacts 

Connected and autonomous vehicles (CAVs) offer users the potential for reduced value of time, 

enhanced quality of travel experience, and seamless situational awareness and connectivity. This 

project investigates cooperative platoon control of CAVs by leveraging their capabilities. From the 

perspective of transportation operation, the research outcomes shed lights on the future 

development CAV platoon control to benefit the traffic flow when confronting computational and 

communication-related constraints. From the perspective of human quality-of-life and 

environment, the platoon control methods proposed in this project help improve traffic efficiency 

and reduce traffic oscillation. Therefore, broad impacts include reduction of travel time, lowering 

fuel consumption, and decreasing traffic emissions.  

        8.4 Tech Transfer 

In the execution of the project titled cooperative control mechanism for platoon formation of 

connected and autonomous vehicles, the research team undertook a number of technology transfer 

activities. First, the research team published four articles in technical journals with a wide 

readership, high reputation, and high impact factor. The team also gave two presentations at the 

TRB annual meeting, a conference with over 14,000 attendees. Further, a number of tech transfer 

activities were undertaken as part of this project, such as communication with other universities 

through webinars and forums. The list below summarizes the tech transfer activities undertaken by 

the research team through the course of this project: 

 

In 2019:  

1. Technical paper in Transportation Research Part B: Methodological, 128, 271-301: A real-time 

deployable model predictive control-based cooperative platooning approach for connected and 

autonomous vehicles, by Wang, J., Gong, S., Peeta, S., & Lu, L.  

2. Technical paper in Transportation Research Procedia, 38, 242-262: Cooperative adaptive cruise 

control for connected autonomous vehicles by factoring communication-related constraints, by 

Wang, C., Gong, S., Zhou, A., Li, T., & Peeta, S.  

3. Conference presentation at 98th Annual Meeting of the Transportation Research Board, 

Washington, D.C., USA: Cooperative Adaptive Cruise Control for Connected Autonomous 
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Vehicles by Factoring Communication-Related Constraints, Wang, C., Gong, S. and Peeta, S. 

(2019).  

 

In 2020:  

1. Technical paper in Transportation Research Record, 2674(4), 444-458, Smooth-Switching 

Control-Based Cooperative Adaptive Cruise Control by Considering Dynamic Information Flow 

Topology., by Zhou, A., Gong, S., Wang, C., & Peeta, S. 

2.  Conference presentation at the 99th Annual Meeting of Transportation Research Board (TRB), 

Washington, D.C, USA: A Real-time Deployable Model Predictive Control-based Cooperative 

Platooning Approach for Connected and Autonomous Vehicles, Wang, J., Gong, S., Peeta, S., Lu, 

L. 

3. Technical paper in Transportation Research Part C: Emerging Technologies, 113, 124-

145, Cooperative adaptive cruise control for connected autonomous vehicles by factoring 

communication-related constraints, by Wang, C., Gong, S., Zhou, A., Li, T., & Peeta, S. (2020). 

4. Technical paper in IEEE Transactions On Intelligent Transportation Systems, Vol. 20, Nr. 6, 

Consensus-Based Cooperative Control for Multi-Platoon Under the Connected Vehicles 

Environment, by Li, Y., Tang, C., Li, K., He, X., Perta, S., Wang, Y. 

 

In 2021: 

1. Presentation at the 2021 Master Forum of Transportation Engineering, Southeasten University, 

Nanjing, China: Information Flow Topologies and Propagation Modeling for Traffic 

Management and Control under Connected Vehicle Environments, Peeta, S. 
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APPENDIX 1 

 

Cooperative Control Mechanism for Platoon Formation of Connected and Autonomous Vehicles 
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control-based cooperative platooning approach for connected and autonomous vehicles. 

Transportation Research Part B: Methodological, 128, 271-301. 

Abstract 

Recently, model predictive control (MPC)-based platooning strategies have been developed 

for connected and autonomous vehicles (CAVs) to enhance traffic performance by enabling 

cooperation among vehicles in the platoon. However, they are not deployable in practice as 

they require the embedded optimal control problem to be solved instantaneously, with platoon 

size and prediction horizon duration compounding the intractability. Ignoring the 

computational requirements leads to control delays that can deteriorate platoon performance 

and cause collisions between vehicles. To address this critical gap, this study first proposes an 

idealized MPC-based cooperative control strategy for CAV platooning based on the strong 

assumption that the problem can be solved instantaneously. It also proposes a solution 

algorithm for the embedded optimal control problem to maximize platoon performance. It then 

develops two approaches to deploy the idealized strategy, labeled the deployable MPC 

(DMPC) and the DMPC with first-order approximation (DMPC-FOA). The DMPC approach 

reserves certain amount of time before each sampling time instant to estimate the optimal 

control decisions. Thereby, the estimated optimal control decisions can be executed by all the 

following vehicles at each sampling time instant to control their behavior. However, under the 

DMPC approach, the estimated optimal control decisions may deviate significantly from those 

of the idealized MPC strategy due to prediction error of the leading vehicle's state at the 

sampling time instant. The DMPC-FOA approach can significantly improve the estimation 

performance of the DMPC approach by capturing the impacts of the prediction error of the 

leading vehicle's state on the optimal control decisions. An analytical method is derived for 

the sensitivity analysis of the optimal control decisions. Further, stability analysis is performed 

for the idealized MPC strategy, and a sufficient condition is derived to ensure its asymptotic 

stability under certain conditions. Numerical experiments illustrate that the control decisions 

estimated by the DMPC-FOA approach are very close to those of the idealized MPC strategy 

under different traffic flow scenarios. Hence, DMPC-FOA can address the issue of control 

delay of the idealized MPC strategy effectively and can efficiently coordinate car-following 

behaviors of all CAVs in the platoon to dampen traffic oscillations. Thereby, it can be applied 

for real-time cooperative control of a CAV platoon. 
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for connected autonomous vehicles by factoring communication-related constraints. 
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Abstract 

Compared to existing human-driven vehicles (HDVs), connected and autonomous vehicles 

(CAVs) offer users the potential for reduced value of time, enhanced quality of travel 

experience, and seamless situational awareness and connectivity. Hence, CAV users can differ 

in their route choice behavior compared to HDV users, leading to mixed traffic flows that can 

significantly deviate from the single-class HDV traffic pattern. However, due to the lack of 

quantitative models, there is limited knowledge on the evolution of mixed traffic flows in a 

traffic network. To partly bridge this gap, this study proposes a multiclass traffic assignment 

model, where HDV users and CAV users follow different route choice principles, 

characterized by the cross-nested logit (CNL) model and user equilibrium (UE) model, 

respectively. The CNL model captures HDV users’ uncertainty associated with limited 

knowledge of traffic conditions while overcoming the route overlap issue of logit-based 

stochastic user equilibrium. The UE model characterizes the CAV's capability for acquiring 

accurate information on traffic conditions. In addition, the multiclass model can capture the 

characteristics of mixed traffic flow such as the difference in value of time between HDVs and 

CAVs and the asymmetry in their driving interactions, thereby enhancing behavioral realism 

in the modeling. The study develops a new solution algorithm labeled RSRS-MSRA, in which 

a route-swapping based strategy is embedded with a self-regulated step size choice technique, 

to solve the proposed model efficiently. Sensitivity analysis of the proposed model is 

performed to gain insights into the effects of perturbations on the mixed traffic equilibrium, 

which facilitates the estimation of equilibrium traffic flow and identification of critical 

elements under expected or unexpected events. The study results can assist transportation 

decision-makers to design effective planning and operational strategies to leverage the 

advantages of CAVs and manage traffic congestion under mixed traffic flows. 
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Abstract 

 Compared to existing human-driven vehicles (HDVs), connected and autonomous vehicles 

(CAVs) offer users the potential for reduced value of time, enhanced quality of travel 

experience, and seamless situational awareness and connectivity. Hence, CAV users can differ 

in their route choice behavior compared to HDV users, leading to mixed traffic flows that can 

significantly deviate from the single-class HDV traffic pattern. However, due to the lack of 

quantitative models, there is limited knowledge on the evolution of mixed traffic flows in a 

traffic network. To partly bridge this gap, this study proposes a multiclass traffic assignment 

model, where HDV users and CAV users follow different route choice principles, 

characterized by the cross-nested logit (CNL) model and user equilibrium (UE) model, 
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respectively. The CNL model captures HDV users’ uncertainty associated with limited 

knowledge of traffic conditions while overcoming the route overlap issue of logit-based 

stochastic user equilibrium. The UE model characterizes the CAV's capability for acquiring 

accurate information on traffic conditions. In addition, the multiclass model can capture the 

characteristics of mixed traffic flow such as the difference in value of time between HDVs and 

CAVs and the asymmetry in their driving interactions, thereby enhancing behavioral realism 

in the modeling. The study develops a new solution algorithm labeled RSRS-MSRA, in which 

a route-swapping based strategy is embedded with a self-regulated step size choice technique, 

to solve the proposed model efficiently. Sensitivity analysis of the proposed model is 

performed to gain insights into the effects of perturbations on the mixed traffic equilibrium, 

which facilitates the estimation of equilibrium traffic flow and identification of critical 

elements under expected or unexpected events. The study results can assist transportation 

decision-makers to design effective planning and operational strategies to leverage the 

advantages of CAVs and manage traffic congestion under mixed traffic flows. 

 

• Zhou, A., Gong, S., Wang, C., & Peeta, S. (2020). Smooth-Switching Control-Based 

Cooperative Adaptive Cruise Control by Considering Dynamic Information Flow Topology. 

Transportation Research Record, 2674(4), 444-458. 

Abstract 

 Vehicle-to-vehicle communications can be unreliable because of interference and information 

congestion, which leads to the dynamic information flow topology (IFT) in a platoon of 

connected and autonomous vehicles. Some existing studies adaptively switch the controller of 

cooperative adaptive cruise control (CACC) to optimize string stability when IFT varies. 

However, the difference of transient response between controllers can induce uncomfortable 

jerks at switching instances, significantly affecting riding comfort and jeopardizing vehicle 

powertrain. To improve riding comfort while maintaining string stability, the authors introduce 

a smooth-switching control-based CACC scheme with IFT optimization (CACC-SOIFT) by 

implementing a bi-layer optimization model and a Kalman predictor. The first optimization 

layer balances the probability of communication failure and control performance optimally, 

generating a robust IFT to reduce controller switching. The second optimization layer adjusts 

the controller parameters to minimize tracking error and the undesired jerk. Further, a Kalman 

predictor is applied to predict vehicle acceleration if communication failures occur. It is also 

used to estimate the states of preceding vehicles to suppress the measurement noise and the 

acceleration disturbance. The effectiveness of the proposed CACC-SOIFT is validated through 

numerical experiments based on NGSIM field data. Results indicate that the CACC-SOIFT 

framework can guarantee string stability and riding comfort in the environment of dynamic 

IFT. 
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• Li, Y., Tang, C., Li, K., He, X., Peeta, S., Wang, Y. (2019). Consensus-Based Cooperative 

Control for Multi-Platoon Under the Connected Vehicles Environment. IEEE Transactions 

on Intelligent Transportation Systems, Vol. 20, Nr. 6, 2220-2229. 

Abstract 

This paper investigates formation control protocols for autonomous vehicular strings with 

vehicle-to-vehicle (V2V) communication connections. To this end, a four-layer framework is 

first proposed to illustrate the cooperative mechanism within and across strings. Then, 

cooperative control protocols are designed based on vehicle role, i.e., leader or follower, in 

vehicular multi-string. In particular, longitudinal controllers are designed for single string 

and multiple strings by incorporating inter-vehicle gap and velocity difference of the 

follower vehicle with respect to the preceding vehicle and the lead vehicle. In addition, 

lateral controllers are proposed for single string and multiple strings based on the artificial 

function method. The proposed protocols ensure that follower vehicles asymptotically track 

the leader within each string, while different vehicular strings can form a desired platoon 

pattern. The study further analyzes the stability and consensus of the proposed control 

protocols using the Routh–Hurwitz stable criterion and the Lyapunov technique. Numerical 

experiments are performed for two cooperative mechanisms—parallel and serial. Results 

from numerical experiments illustrate the effects of the proposed control protocols on road 

throughput and demonstrate their effectiveness for position and velocity consensuses. 
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